Recurrent Autoregressive Networks for Online Multi-Object Tracking

被引:186
|
作者
Fang, Kuan [1 ]
Xiang, Yu [2 ]
Li, Xiaocheng [1 ]
Savarese, Silvio [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Washington, Seattle, WA 98195 USA
关键词
D O I
10.1109/WACV.2018.00057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main challenge of online multi-object tracking is to reliably associate object trajectories with detections in each video frame based on their tracking history. In this work, we propose the Recurrent Autoregressive Network (RAN), a temporal generative modeling framework to characterize the appearance and motion dynamics of multiple objects over time. The RAN couples an external memory and an internal memory. The external memory explicitly stores previous inputs of each trajectory in a time window, while the internal memory learns to summarize long-term tracking history and associate detections by processing the external memory. We conduct experiments on the MOT 2015 and 2016 datasets to demonstrate the robustness of our tracking method in highly crowded and occluded scenes. Our method achieves top-ranked results on the two benchmarks.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 50 条
  • [1] ONLINE MULTI-OBJECT TRACKING WITH CONVOLUTIONAL NEURAL NETWORKS
    Chen, Long
    Ai, Haizhou
    Shang, Chong
    Zhuang, Zijie
    Bai, Bo
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 645 - 649
  • [2] Online Multi-Object Tracking with Dual Matching Attention Networks
    Zhu, Ji
    Yang, Hua
    Liu, Nian
    Kim, Minyoung
    Zhang, Wenjun
    Yang, Ming-Hsuan
    [J]. COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 379 - 396
  • [3] Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking
    Chen, Longtao
    Peng, Xiaojiang
    Ren, Mingwu
    [J]. IEEE ACCESS, 2019, 7 : 3093 - 3105
  • [4] Joint detection and online multi-object tracking
    Kieritz, Hilke
    Huebner, Wolfgang
    Arens, Michael
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1540 - 1548
  • [5] Occlusion Geodesics for Online Multi-Object Tracking
    Possegger, Horst
    Mauthner, Thomas
    Roth, Peter M.
    Bischof, Horst
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1306 - 1313
  • [6] Online Multi-Object Tracking With Visual and Radar Features
    Bae, Seung-Hwan
    [J]. IEEE ACCESS, 2020, 8 : 90324 - 90339
  • [7] Online Multi-object Tracking Based on Deep Learning
    Sun, Zheming
    Bo, Chunjuan
    Wang, Dong
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 33 - 40
  • [8] Attention mechanics for improving online Multi-Object Tracking
    Minh Chuong Dang
    Duc Dung Nguyen
    [J]. 2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 200 - 205
  • [9] A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
    Yin, Junbo
    Wang, Wenguan
    Meng, Qinghao
    Yang, Ruigang
    Shen, Jianbing
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6767 - 6776
  • [10] Multi-Object Tracking with Quadruplet Convolutional Neural Networks
    Son, Jeany
    Baek, Mooyeol
    Cho, Minsu
    Han, Bohyung
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3786 - 3795