Network-based prediction of protein interactions

被引:259
|
作者
Kovacs, Istvan A. [1 ,2 ,3 ,4 ]
Luck, Katja [3 ,5 ]
Spirohn, Kerstin [3 ,5 ]
Wang, Yang [3 ,5 ]
Pollis, Carl [3 ,5 ]
Schlabach, Sadie [3 ,5 ]
Bian, Wenting [3 ,5 ]
Kim, Dae-Kyum [3 ,6 ,7 ,8 ,9 ]
Kishore, Nishka [3 ,6 ,7 ,8 ,9 ]
Hao, Tong [3 ,5 ]
Calderwood, Michael A. [3 ,5 ]
Vidal, Marc [3 ,5 ]
Barabasi, Albert-Laszlo [1 ,2 ,3 ,10 ,11 ,12 ]
机构
[1] Northeastern Univ, Network Sci Inst, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, CCSB, Boston, MA 02115 USA
[4] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[5] Harvard Med Sch, Blavatnik Inst, Dept Genet, Boston, MA 02115 USA
[6] Donnelly Ctr, Toronto, ON, Canada
[7] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[8] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[9] Sinai Hlth Syst, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[10] Harvard Med Sch, Brigham & Womens Hosp, Div Network Med, Boston, MA 02115 USA
[11] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[12] Cent European Univ, Dept Network & Data Sci, H-1051 Budapest, Hungary
关键词
RETINITIS-PIGMENTOSA; LINK-PREDICTION; GENES; MEDICINE; FAM161A;
D O I
10.1038/s41467-019-09177-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite exceptional experimental efforts to map out the human interactome, the continued data incompleteness limits our ability to understand the molecular roots of human disease. Computational tools offer a promising alternative, helping identify biologically significant, yet unmapped protein-protein interactions (PPIs). While link prediction methods connect proteins on the basis of biological or network-based similarity, interacting proteins are not necessarily similar and similar proteins do not necessarily interact. Here, we offer structural and evolutionary evidence that proteins interact not if they are similar to each other, but if one of them is similar to the other's partners. This approach, that mathematically relies on network paths of length three (L3), significantly outperforms all existing link prediction methods. Given its high accuracy, we show that L3 can offer mechanistic insights into disease mechanisms and can complement future experimental efforts to complete the human interactome.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Network-based prediction of protein interactions
    István A. Kovács
    Katja Luck
    Kerstin Spirohn
    Yang Wang
    Carl Pollis
    Sadie Schlabach
    Wenting Bian
    Dae-Kyum Kim
    Nishka Kishore
    Tong Hao
    Michael A. Calderwood
    Marc Vidal
    Albert-László Barabási
    [J]. Nature Communications, 10
  • [2] Assessment of community efforts to advance network-based prediction of protein–protein interactions
    Xu-Wen Wang
    Lorenzo Madeddu
    Kerstin Spirohn
    Leonardo Martini
    Adriano Fazzone
    Luca Becchetti
    Thomas P. Wytock
    István A. Kovács
    Olivér M. Balogh
    Bettina Benczik
    Mátyás Pétervári
    Bence Ágg
    Péter Ferdinandy
    Loan Vulliard
    Jörg Menche
    Stefania Colonnese
    Manuela Petti
    Gaetano Scarano
    Francesca Cuomo
    Tong Hao
    Florent Laval
    Luc Willems
    Jean-Claude Twizere
    Marc Vidal
    Michael A. Calderwood
    Enrico Petrillo
    Albert-László Barabási
    Edwin K. Silverman
    Joseph Loscalzo
    Paola Velardi
    Yang-Yu Liu
    [J]. Nature Communications, 14
  • [3] Prediction of Chemical-Protein Interactions Network with Weighted Network-Based Inference Method
    Cheng, Feixiong
    Zhou, Yadi
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    [J]. PLOS ONE, 2012, 7 (07):
  • [4] Network-based prediction of protein function
    Sharan, Roded
    Ulitsky, Igor
    Shamir, Ron
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 : 1 - 13
  • [5] Assessment of community efforts to advance network-based prediction of protein-protein interactions
    Wang, Xu-Wen
    Madeddu, Lorenzo
    Spirohn, Kerstin
    Martini, Leonardo
    Fazzone, Adriano
    Becchetti, Luca
    Wytock, Thomas P.
    Kovacs, Istvan A.
    Balogh, Oliver M.
    Benczik, Bettina
    Petervari, Matyas
    Agg, Bence
    Ferdinandy, Peter
    Vulliard, Loan
    Menche, Joerg
    Colonnese, Stefania
    Petti, Manuela
    Scarano, Gaetano
    Cuomo, Francesca
    Hao, Tong
    Laval, Florent
    Willems, Luc
    Twizere, Jean-Claude
    Vidal, Marc
    Calderwood, Michael A.
    Petrillo, Enrico
    Barabasi, Albert-Laszlo
    Silverman, Edwin K.
    Loscalzo, Joseph
    Velardi, Paola
    Liu, Yang-Yu
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] On network-based kernel methods for protein-protein interactions with applications in protein functions prediction
    Li, Limin
    Ching, Waiki
    Chan, Yatming
    Mamitsuka, Hiroshi
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (05) : 917 - 930
  • [7] On network-based kernel methods for protein-protein interactions with applications in protein functions prediction
    Limin Li
    Waiki Ching
    Yatming Chan
    Hiroshi Mamitsuka
    [J]. Journal of Systems Science and Complexity, 2010, 23 : 917 - 930
  • [8] Convolution Neural Network-Based Prediction of Protein Thermostability
    Fang, Xingrong
    Huang, Jinsha
    Zhang, Rui
    Wang, Fei
    Zhang, Qiuyu
    Li, Guanlin
    Yan, Jinyong
    Zhang, Houjin
    Yan, Yunjun
    Xu, Li
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4833 - 4843
  • [9] A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions
    Mengqu Ge
    Ao Li
    Minghui Wang
    [J]. Genomics,Proteomics & Bioinformatics, 2016, 14 (01) : 62 - 71
  • [10] A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions
    Mengqu Ge
    Ao Li
    Minghui Wang
    [J]. Genomics,Proteomics & Bioinformatics., 2016, (01) - 71