Biomass-Derived 3D Interconnected Porous Carbon-Encapsulated Nano-FeS2 for High-Performance Lithium-Ion Batteries

被引:37
|
作者
Xu, Xin [1 ,2 ]
Ying, Hangjun [1 ]
Zhang, Shunlong [1 ]
Meng, Zhen [2 ]
Yan, Xufeng [1 ]
Han, Wei-Qiang [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn NIMTE, Ningbo 315201, Peoples R China
基金
中国国家自然科学基金;
关键词
biomass; lotus rhizome starch; hierarchical porous carbon; FeS2; lithium-ion battery; FREESTANDING ANODE; CATHODE MATERIALS; FES2; STARCH; MECHANISM; RHIZOME; PYRITE; ADSORPTION; FES2-AT-C; STORAGE;
D O I
10.1021/acsaem.0c00537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of earth-abundant materials is strategically important for industrial manufacture. Utilizing the gelatinization and metallic complexation properties of lotus rhizome starch, a FeS2/lotus rhizome starch-derived carbon (LRSC) composite was prepared with ultrafine FeS2 particles encapsulated in hierarchically porous carbon. The abundant interconnected macropores and micropores in the LRSC can provide diffusion channels for ions and sufficient space for the volume change of FeS2. Besides, a continuous interconnected carbon matrix remarkably enhances the electrical conductivity of FeS2. Therefore, the hierarchically porous carbon-stabilized FeS2 exhibits significantly improved cycling performance compared to pristine FeS2 and FeS2 combined with glucose-pyrolyzed carbon. The electrochemical capacity of the FeS2/LRSC composite is 923.5 mA h g(-1) with a capacity retention of 90.2% after 100 cycles at 0.5 A g(-1), which is much higher than that of pristine FeS2 (54.6%) and FeS2/C (32.6%). This work offers an approach for designing cost-effective and high-performance electrodes for lithium-ion batteries.
引用
收藏
页码:5589 / 5596
页数:8
相关论文
共 50 条
  • [1] Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
    He, Wei
    Luo, Hang
    Jing, Peng
    Wang, Hongmei
    Xu, Changhaoyue
    Wu, Hao
    Wang, Qian
    Zhang, Yun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [2] Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
    He W.
    Luo H.
    Jing P.
    Wang H.
    Xu C.
    Wu H.
    Wang Q.
    Zhang Y.
    Journal of Alloys and Compounds, 2022, 918
  • [3] FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries
    Heguang Liu
    Ruixuan Jing
    Zilu Wang
    Caiyin You
    MRS Communications, 2021, 11 : 418 - 424
  • [4] FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries
    Liu, Heguang
    Jing, Ruixuan
    Wang, Zilu
    You, Caiyin
    MRS COMMUNICATIONS, 2021, 11 (04) : 418 - 424
  • [5] Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries
    Xuan Miao
    Haiqiang Li
    Li Wang
    Yanli Li
    Dongfei Sun
    Xiaozhong Zhou
    Ziqiang Lei
    Journal of Materials Science, 2020, 55 : 12139 - 12150
  • [6] Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries
    Miao, Xuan
    Li, Haiqiang
    Wang, Li
    Li, Yanli
    Sun, Dongfei
    Zhou, Xiaozhong
    Lei, Ziqiang
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (26) : 12139 - 12150
  • [7] Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries
    Liu, Hongli
    Lv, Chunxiao
    Chen, Shuai
    Song, Xiaoyang
    Liu, Bohan
    Sun, Jin
    Zhang, Huawei
    Yang, Dongjiang
    She, Xilin
    Zhao, Xiaoliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 795 : 54 - 59
  • [8] 3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a High-Performance Anode for Lithium-Ion Batteries
    Zhang, Chengwei
    Zhang, Zheng
    Yin, Fuxing
    Zhang, Yongguang
    Mentbayeva, Almagul
    Babaa, Moulay-Rachid
    Molkenova, Anara
    Bakenov, Zhumabay
    CHEMELECTROCHEM, 2017, 4 (09): : 2359 - 2365
  • [9] Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries
    Zhang, Meng
    Bai, Nan
    Lin, Wenfeng
    Wang, Hao
    Li, Jin
    Ma, Ling
    Wang, Xiaomeng
    Zhang, Dianping
    Cao, Zhijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010