Improved least squares identification algorithm for multivariable Hammerstein systems

被引:88
|
作者
Wang, Dongqing [1 ]
Zhang, Wei [1 ]
机构
[1] Qingdao Univ, Coll Automat Engn, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
ITERATIVE ESTIMATION ALGORITHMS; NONLINEAR-SYSTEMS; PARAMETER-ESTIMATION; SUBSPACE IDENTIFICATION; FILTERING TECHNIQUE; PRINCIPLE; BACKLASH; LPV;
D O I
10.1016/j.jfranklin.2015.09.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multivariable Hammerstein output error moving average (OEMA) system consists of parallel nonlinear blocks interconnected with a linear OEMA block. Its identification model, which is not a regression form, contains a sum of some bilinear functions about the parameter vectors of the nonlinear part and the linear part. By using the Taylor expansion on a least squares quadratic criterion function, this paper investigates an improved least squares algorithm to identify the parameters of the multivariable Hammerstein OEMA system. The parameter vector is defined as a unified vector of all parameter vectors in the non-regression model of this system; the information vector is defined as the derivative of the noise variable to the unified parameter vector. Numerical simulations indicate that the proposed algorithm is capable of generating accurate parameter estimates, and easy to implement on-line. (C) 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5292 / 5307
页数:16
相关论文
共 50 条
  • [1] Identification for hammerstein systems using extended least squares algorithm
    Zhao Wenxiao
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 241 - 245
  • [2] Robust extended recursive least squares identification algorithm for Hammerstein systems with dynamic disturbances
    Dong, Shijian
    Yu, Li
    Zhang, Wen-An
    Chen, Bo
    DIGITAL SIGNAL PROCESSING, 2020, 101
  • [3] Hierarchical least squares identification methods for multivariable systems
    Ding, F
    Chen, TW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) : 397 - 402
  • [4] Coupled-least-squares identification for multivariable systems
    Ding, Feng
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01): : 68 - 79
  • [5] A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
    Ding, Feng
    Chen, Huibo
    Xu, Ling
    Dai, Jiyang
    Li, Qishen
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (08): : 3737 - 3752
  • [6] Convergence properties of the least squares estimation algorithm for multivariable systems
    Liu, Yanjun
    Ding, Feng
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) : 476 - 483
  • [7] PERFORMANCE ANALYSIS OF LEAST SQUARES ALGORITHM FOR MULTIVARIABLE STOCHASTIC SYSTEMS
    Wang, Ziming
    Xing, Yiming
    Zhu, Xinghua
    KYBERNETIKA, 2023, 59 (01) : 28 - 44
  • [8] Hierarchical Least Squares Estimation Algorithm for Hammerstein-Wiener Systems
    Wang, Dong-Qing
    Ding, Feng
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 825 - 828
  • [9] Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems
    Huibo Chen
    Feng Ding
    Circuits, Systems, and Signal Processing, 2015, 34 : 61 - 75
  • [10] Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems
    Chen, Huibo
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (01) : 61 - 75