Flexible Nanocellulose/Lignosulfonates Ion-Conducting Separators for Polymer Electrolyte Fuel Cells

被引:24
|
作者
Vilela, Carla [1 ]
Morais, Joao D. [1 ]
Silva, Ana Cristina Q. [1 ]
Munoz-Gil, Daniel [2 ,3 ]
Figueiredo, Filipe M. L. [2 ]
Silvestre, Armando J. D. [1 ]
Freire, Carmen S. R. [1 ]
机构
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Chem, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, P-3810193 Aveiro, Portugal
[3] CSIC, Inst Ceram & Glass, Madrid 28049, Spain
关键词
bacterial nanocellulose; lignosulfonates; mechanical performance; thermal-oxidative stability; ion-exchange membranes; biobased separators; ionic conductivity; NANOCOMPOSITE MEMBRANES; PROTONIC CONDUCTIVITY; COMPOSITE MEMBRANES; NANOCELLULOSE; LIGNIN; MECHANISMS; TRANSPORT; NAFION(R);
D O I
10.3390/nano10091713
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The utilization of biobased materials for the fabrication of naturally derived ion-exchange membranes is breezing a path to sustainable separators for polymer electrolyte fuel cells (PEFCs). In this investigation, bacterial nanocellulose (BNC, a bacterial polysaccharide) and lignosulfonates (LS, a by-product of the sulfite pulping process), were blended by diffusion of an aqueous solution of the lignin derivative and of the natural-based cross-linker tannic acid into the wet BNC nanofibrous three-dimensional structure, to produce fully biobased ion-exchange membranes. These freestanding separators exhibited good thermal-oxidative stability of up to about 200 degrees C, in both inert and oxidative atmospheres (N(2)and O-2, respectively), high mechanical properties with a maximum Young's modulus of around 8.2 GPa, as well as good moisture-uptake capacity with a maximum value of ca. 78% after 48 h for the membrane with the higher LS content. Moreover, the combination of the conducting LS with the mechanically robust BNC conveyed ionic conductivity to the membranes, namely a maximum of 23 mS cm(-1)at 94 degrees C and 98% relative humidity (RH) (in-plane configuration), that increased with increasing RH. Hence, these robust water-mediated ion conductors represent an environmentally friendly alternative to the conventional ion-exchange membranes for application in PEFCs.
引用
收藏
页码:1 / 13
页数:14
相关论文
共 50 条
  • [1] Ion-conducting polymer electrolyte interactions
    Gutshall, J
    Frech, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U512 - U513
  • [2] Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives
    Kato, Ryo
    Mirmira, Priyadarshini
    Sookezian, Arvin
    Grocke, Garrett L.
    Patel, Shrayesh N.
    Rowan, Stuart J.
    ACS MACRO LETTERS, 2020, 9 (04) : 500 - 506
  • [3] ION-CONDUCTING POLYMER ELECTROLYTES
    SCROSATI, B
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1989, 59 (01): : 151 - 160
  • [4] Ion-conducting polymer electrolytes
    Scrosati, Bruno
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1989, 59 (01): : 151 - 160
  • [5] Preparation of a nanocellulose gelatin-based ion-conducting hydrogel for flexible strain sensors
    Huang, Xinmin
    Wang, Yaning
    Tan, Xiaobin
    Yang, Lianhe
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (27) : 12209 - 12216
  • [6] Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte
    Ni, Meng
    Leung, Dennis Y. C.
    Leung, Michael K. H.
    JOURNAL OF POWER SOURCES, 2008, 183 (02) : 682 - 686
  • [7] Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte
    Qin, Hengfei
    Fu, Kun
    Zhang, Ying
    Ye, Yuhang
    Song, Mingyao
    Kuang, Yudi
    Jang, Soo-Hwan
    Jiang, Feng
    Cui, Lifeng
    ENERGY STORAGE MATERIALS, 2020, 28 : 293 - 299
  • [8] Ion-conducting mechanism of composite polymer electrolyte: An emission FTIR spectroscopy study
    Xu Jin-mei
    Jiang Yan-xia
    Zhuang Quan-chao
    Zeng Dong-mei
    Sun Shi-gang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27 (02) : 247 - 249
  • [9] Ion-conducting mechanism of composite polymer electrolyte: an emission FTIR spectroscopy study
    Xu, Jin-Mei
    Jiang, Yan-Xia
    Zhuang, Quan-Chao
    Zeng, Dong-Mei
    Sun, Shi-Gang
    Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2007, 27 (02): : 247 - 249
  • [10] Transparent flexible lithium ion conducting solid polymer electrolyte
    Puthirath, Anand B.
    Patra, Sudeshna
    Pal, Shubhadeep
    Manoj, M.
    Balan, Aravind Puthirath
    Jayalekshmi, S.
    Narayanan, Tharangattu N.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11152 - 11162