Geometrical Structure of Laplacian Eigenfunctions

被引:240
|
作者
Grebenkov, D. S. [1 ,2 ,3 ]
Nguyen, B. -T. [1 ]
机构
[1] Ecole Polytech, CNRS, Lab Phys Matiere Condensee, F-91128 Palaiseau, France
[2] CNRS Independent Univ Moscow, Lab Poncelet, Moscow 119002, Russia
[3] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
关键词
Laplace operator; eigenfunctions; eigenvalues; localization; TIME-DEPENDENT DIFFUSION; QUANTUM WAVE-GUIDES; PARTIAL-DIFFERENTIAL-EQUATIONS; SINGULARLY PERTURBED DOMAIN; NEUMANN BOUNDARY-CONDITIONS; GROUND-STATE EIGENFUNCTION; HEAT-CONTENT ASYMPTOTICS; INVERSE SPECTRAL PROBLEM; WEYL-BERRY CONJECTURE; CONVEX PLANE POLYGONS;
D O I
10.1137/120880173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We summarize the properties of eigenvalues and eigenfunctions of the Laplace operator in bounded Euclidean domains with Dirichlet, Neumann, or Robin boundary condition. We keep the presentation at a level accessible to scientists from various disciplines ranging from mathematics to physics and computer sciences. The main focus is placed onto multiple intricate relations between the shape of a domain and the geometrical structure of eigenfunctions.
引用
收藏
页码:601 / 667
页数:67
相关论文
共 50 条
  • [1] Laplacian Eigenfunctions Learn Population Structure
    Zhang, Jun
    Niyogi, Partha
    McPeek, Mary Sara
    PLOS ONE, 2009, 4 (12):
  • [2] ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL
    Anoop, T. V.
    Drabek, P.
    Sasi, Sarath
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2503 - 2512
  • [3] An Observation on Eigenfunctions of the Laplacian
    Agnid Banerjee
    Nicola Garofalo
    La Matematica, 2024, 3 (4): : 1451 - 1455
  • [4] ERGODICITY AND LAPLACIAN EIGENFUNCTIONS
    DEVERDIERE, YC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 102 (03) : 497 - 502
  • [5] CUSP FORMS AND EIGENFUNCTIONS OF THE LAPLACIAN
    GOOD, A
    MATHEMATISCHE ANNALEN, 1981, 255 (04) : 523 - 548
  • [6] Integral representation for eigenfunctions of the Laplacian
    Fujita, K
    Morimoto, M
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (03) : 699 - 713
  • [7] Fluid Control with Laplacian Eigenfunctions
    Chen, Yixin
    Levin, David I. W.
    Langlois, Timothy R.
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [8] ON THE APPROXIMATE NORMALITY OF EIGENFUNCTIONS OF THE LAPLACIAN
    Meckes, Elizabeth
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5377 - 5399
  • [9] ON LOCALIZATION OF EIGENFUNCTIONS OF THE MAGNETIC LAPLACIAN
    Ovall, Jeffrey s.
    Quan, Hadrian
    Reid, Robyn
    Steinerberger, Stefan
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 94 (02) : 235 - 257
  • [10] On the Dual Geometry of Laplacian Eigenfunctions
    Cloninger, Alexander
    Steinerberger, Stefan
    EXPERIMENTAL MATHEMATICS, 2021, 30 (02) : 283 - 293