Nitrogen-Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction

被引:29
|
作者
Gao, Shuyan [1 ]
Fan, Hao [1 ]
Wei, Xianjun [1 ]
Li, Liang [2 ]
Bando, Yoshio [3 ]
Golberg, Dmitri [3 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Soochow Univ, Dept Phys, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China
[3] NIMS, World Premier Int WPI Ctr Mat Nanoarchitecton MAN, Tsukuba, Ibaraki 3050044, Japan
关键词
CO tolerance; fuel crossover; mesopore confinement; nitrogen-doped carbon; oxygen reduction reaction; METAL-FREE ELECTROCATALYSTS; PARTICLE-SIZE; PLATINUM; GRAPHENE; NANOPARTICLES; MECHANISMS; NANOTUBES; SUPPORTS; IRON;
D O I
10.1002/ppsc.201300121
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts for the oxygen reduction reaction (ORR) present some of the most challenging vulnerability issues reducing ORR performance and shortening their practical lifetime. Fuel crossover resistance, selective activity, and catalytic stability of ORR catalysts are still to be addressed. Here, a facile and in situ template-free synthesis of Pt-containing mesoporous nitrogen-doped carbon composites (Pt-m-N-C) is designed and specifically developed to overcome its drawback as an electrocatalyst for ORR, while its high activity is sustained. The as-prepared Pt-m-N-C catalyst exhibits high electrocatalytic activity, dominant four-electron oxygen reduction pathway, superior stability, fuel crossover resistance, and selective activity to a commercial Pt/C catalyst in 0.1 m KOH aqueous solution. Such excellent performance benefits from in situ covalent incorporation of Pt nanoparticles with optimal size into N-doped carbon support, dense active catalytic sites on surface, excellent electrical contacts between the catalytic sites and the electron-conducting host, and a favorable mesoporous structure for the stabilization of the Pt nanoparticles by pore confinement and diffusion of oxygen molecules.
引用
收藏
页码:864 / 872
页数:9
相关论文
共 50 条
  • [1] pH Effect on Electrochemistry of Nitrogen-Doped Carbon Catalyst for Oxygen Reduction Reaction
    Wan, Kai
    Yu, Zhi-peng
    Li, Xiao-hua
    Liu, Ming-yao
    Yang, Gang
    Piao, Jin-hua
    Liang, Zhen-xing
    ACS CATALYSIS, 2015, 5 (07): : 4325 - 4332
  • [2] Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium
    Nagaiah, Tharamani C.
    Kundu, Shankhamala
    Bron, Michael
    Muhler, Martin
    Schuhmann, Wolfgang
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) : 338 - 341
  • [3] Insight into the nitrogen-doped carbon as oxygen reduction reaction catalyst: The choice of carbon/nitrogen source and active sites
    Zeng, Dongrong
    Yu, Xiang
    Zhan, Yunfeng
    Cao, Linmin
    Wu, Xiaoxian
    Zhang, Bodong
    Huang, Jilin
    Lin, Zhipeng
    Xie, Fangyan
    Zhang, Weihong
    Chen, Jian
    Xie, Weiguang
    Mai, Wenjie
    Meng, Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (20) : 8563 - 8575
  • [4] Nitrogen-Doped Pt/C Electrocatalysts with Enhanced Activity and Stability toward the Oxygen Reduction Reaction
    Choi, Sang-Il
    Lee, Su-Un
    Choi, Ran
    Park, Joon T.
    Han, Sang Woo
    CHEMPLUSCHEM, 2013, 78 (10): : 1252 - 1257
  • [5] Mechanistic understanding of oxygen reduction reaction on nitrogen-doped carbon
    Zhang, Zhiyong
    Li, Fei
    Neurock, Matthew
    Brown, Gilbert M.
    Overbury, Steven H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [6] Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction
    Xiong, Chun
    Wei, Zidong
    Hu, Baoshan
    Chen, Siguo
    Li, Li
    Guo, Lin
    Ding, Wei
    Liu, Xiao
    Ji, Weijia
    Wang, Xiaopei
    JOURNAL OF POWER SOURCES, 2012, 215 : 216 - 220
  • [7] Highly Active Wood-Derived Nitrogen-Doped Carbon Catalyst for the Oxygen Reduction Reaction
    Kaare, Katlin
    Yu, Eric
    Volperts, Aleksandrs
    Dobele, Galina
    Zhurinsh, Aivars
    Dyck, Alexander
    Niaura, Gediminas
    Tamasauskaite-Tamasiunaite, Loreta
    Norkus, Eugenijus
    Andrulevicius, Mindaugas
    Danilson, Mati
    Kruusenberg, Ivar
    ACS OMEGA, 2020, 5 (37): : 23578 - 23587
  • [8] Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction
    Panomsuwan, Gasidit
    Hussakan, Chadapat
    Kaewtrakulchai, Napat
    Techapiesancharoenkij, Ratchatee
    Serizawa, Ai
    Ishizaki, Takahiro
    Eiad-ua, Apiluck
    RSC ADVANCES, 2022, 12 (27) : 17481 - 17489
  • [9] Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction
    Yu, Zhipeng
    Piao, Jinhua
    Liang, Zhenxing
    MATERIALS, 2017, 10 (02)
  • [10] Nitrogen-doped Carbon Nanofibers for the Oxygen Reduction Reaction: Importance of the Iron Growth Catalyst Phase
    Buan, Marthe E. M.
    Muthuswamy, Navaneethan
    Walmsley, John C.
    Chen, De
    Ronning, Magnus
    CHEMCATCHEM, 2017, 9 (09) : 1663 - 1674