Spinorial representation of surfaces into 4-dimensional space forms

被引:13
|
作者
Bayard, Pierre [1 ]
Lawn, Marie-Amelie [2 ,3 ]
Roth, Julien [4 ]
机构
[1] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
[2] UT Austin, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Univ Paris Est Marne la Vallee Cite Descartes, Lab Anal & Math Appl UMR 8050, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
Dirac operator; Isometric immersions; Weierstrass representation; EIGENVALUES; BOUNDS;
D O I
10.1007/s10455-013-9375-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a geometrically invariant spinorial representation of surfaces in four-dimensional space forms. In the Euclidean space, we obtain a representation formula which generalizes the Weierstrass representation formula of minimal surfaces. We also obtain as particular cases the spinorial characterizations of surfaces in and in given by Friedrich and by Morel.
引用
收藏
页码:433 / 453
页数:21
相关论文
共 50 条