On asymptotic nonlocal symmetry of nonlinear Schrodinger equations

被引:0
|
作者
Zachary, WW [1 ]
Shtelen, VM
机构
[1] Howard Univ, Dept Elect Engn, Washington, DC 20059 USA
[2] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
关键词
D O I
10.2991/jnmp.1998.5.4.8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A concept of asymptotic symmetry is introduced which is based on a definition of symmetry as a reducibility property relative to a corresponding invariant ansatz. It is shown that the nonlocal Lorentz invariance of the free-particle Schrodinger equation, discovered by Fushchych and Segeda in 1977, can be extended to Galilei-invariant equations for free particles with arbitrary spin and, with our definition of asymptotic symmetry, to many nonlinear Schrodinger equations. An important class of solutions of the free Schrodinger equation with improved smoothing properties is obtained.
引用
收藏
页码:417 / 437
页数:21
相关论文
共 50 条
  • [1] Asymptotic reductions and solitons of nonlocal nonlinear Schrodinger equations
    Horikis, Theodoros P.
    Frantzeskakis, Dimitrios J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (20)
  • [2] On Asymptotic Nonlocal Symmetry of Nonlinear Schrödinger Equations
    W. W. Zachary
    V. M. Shtelen
    [J]. Journal of Nonlinear Mathematical Physics, 1998, 5 : 417 - 437
  • [3] NONLOCAL NONLINEAR SCHRODINGER-EQUATIONS
    HEIMSOETH, B
    LANGE, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T752 - T754
  • [4] NONLINEAR, NONLOCAL SCHRODINGER-EQUATIONS
    HEIMSOETH, B
    LANGE, H
    [J]. PHYSICA B, 1991, 175 (1-3): : 44 - 48
  • [5] Lagrangian nonlocal nonlinear Schrodinger equations
    Velasco-Juan, M.
    Fujioka, J.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 156
  • [6] Nonlocal nonlinear Schrodinger equations and their soliton solutions
    Gurses, Metin
    Pekcan, Asli
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [7] Nonlocal nonlinear Schrodinger equations as models of superfluidity
    Berloff, NG
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1999, 116 (5-6) : 359 - 380
  • [8] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    [J]. INVERSE PROBLEMS, 2022, 38 (06)
  • [9] Asymptotic stability of nonlinear Schrodinger equations with potential
    Gang, Z
    Sigal, IM
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (10) : 1143 - 1207
  • [10] Asymptotic stage of modulation instability for the nonlocal nonlinear Schrodinger equation
    Rybalko, Yan
    Shepelsky, Dmitry
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 428