EMCENET: EFFICIENT MULTI-SCALE CONTEXT EXPLORATION NETWORK FOR SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Yanguang [1 ]
Xia, Chenxing [1 ,2 ]
Gao, Xiuju [1 ]
Ge, Bin [1 ]
Zhang, Hanling [3 ]
Li, Kuan-Ching [4 ]
机构
[1] Anhui Univ Sci & Technol, Coll Comp Sci & Engn, Huainan, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei, Peoples R China
[3] Hunan Univ, Sch Design, Xiangtan, Peoples R China
[4] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Deep learning; multi-scale context; multi-level feature; salient object detection;
D O I
10.1109/ICIP46576.2022.9897450
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-scale context is crucial for the accurate salient object detection (SOD) in the real-world scenes. Although current contextual information-based SOD methods have achieved great progress, they may fail to generate precise saliency maps due to their seldom considering the correlation of different scale context during the extraction process. To address these issues, we propose an Efficient Multi-Scale Context Exploration Network (EMCENet) for SOD. Specifically, a progressive multi-scale context extraction (PMCE) module is designed to progressively capture strongly correlated multiscale context by using multi-receptive-field convolution operations. Afterwards, a hierarchical feature hybrid interaction (HFHI) module is introduced to generate powerful feature representations by adaptively aggregating multi-level features in a hybrid interaction strategy. Extensive experimental results on six public datasets demonstrate that the proposed EMCENet method without any post-processing performs favorably against 13 state-of-the-art SOD methods.
引用
收藏
页码:1066 / 1070
页数:5
相关论文
共 50 条
  • [1] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    [J]. arXiv, 2020,
  • [2] Multi-Scale Cascade Network for Salient Object Detection
    Li, Xin
    Yang, Fan
    Cheng, Hong
    Chen, Junyu
    Guo, Yuxiao
    Chen, Leiting
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 439 - 447
  • [3] Multi-scale deep neural network for salient object detection
    Xiao, Fen
    Deng, Wenzheng
    Peng, Liangchan
    Cao, Chunhong
    Hu, Kai
    Gao, Xieping
    [J]. IET IMAGE PROCESSING, 2018, 12 (11) : 2036 - 2041
  • [4] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    [J]. NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [5] A lightweight multi-scale context network for salient object detection in optical remote sensing images
    Lin, Yuhan
    Sun, Han
    Liu, Ningzhong
    Bian, Yetong
    Cen, Jun
    Zhou, Huiyu
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 238 - 244
  • [6] Global context-aware multi-scale features aggregative network for salient object detection
    Ullah, Inam
    Jian, Muwei
    Hussain, Sumaira
    Lian, Li
    Ali, Zafar
    Qureshi, Imran
    Guo, Jie
    Yin, Yilong
    [J]. NEUROCOMPUTING, 2021, 455 : 139 - 153
  • [7] Multi-scale Context Enhancement Network for Object Detection
    Wang, Yanan
    Ma, Yingdong
    [J]. 2022 2ND IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE (SEAI 2022), 2022, : 6 - 11
  • [8] DMINet: dense multi-scale inference network for salient object detection
    Chenxing Xia
    Yanguang Sun
    Xiuju Gao
    Bin Ge
    Songsong Duan
    [J]. The Visual Computer, 2022, 38 : 3059 - 3072
  • [9] Salient Object Detection with Chained Multi-Scale Fully Convolutional Network
    Tang, Youbao
    Wu, Xiangqian
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 618 - 626
  • [10] Multi-scale salient object detection network combining an attention mechanism
    Liu, Di
    Guo, Jichang
    Wang, Yudong
    Zhang, Yi
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 118 - 126