Identification of composite local linear state-space models using a projected gradient search

被引:44
|
作者
Verdult, V [1 ]
Ljung, L
Verhaegen, M
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, NL-2600 AA Delft, Netherlands
[2] Linkoping Univ, Dept Elect Engn, Div Automat Control, S-58183 Linkoping, Sweden
关键词
D O I
10.1080/0020717021000023807
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An identification method is described to determine a weighted combination of local linear state-space models from input and output data. Normalized radial basis functions are used for the weights, and the system matrices of the local linear models are fully parameterized. By iteratively solving a non-linear optimization problem, the centres and widths of the radial basis functions and the system matrices of the local models are determined. To deal with the non-uniqueness of the fully parameterized state-space system, a projected gradient search algorithm is described. It is pointed out that when the weights depend only on the input, the dynamical gradient calculations in the identification method are stable. When the weights also depend on the output, certain difficulties might arise. The methods are illustrated using several examples that have been studied in the literature before.
引用
收藏
页码:1385 / 1398
页数:14
相关论文
共 50 条
  • [1] An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search
    Bergboer, NH
    Verdult, V
    Verhaegen, MHG
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 616 - 621
  • [2] Maximum likelihood identification of multivariable bilinear state-space systems by projected gradient search
    Verdult, V
    Bergboer, N
    Verhaegen, M
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1808 - 1813
  • [3] IDENTIFICATION OF LINEAR PLANTS USING STATE-SPACE MODELS
    MACIAG, C
    COOK, G
    [J]. IECON 89, VOLS 1-4: POWER ELECTRONICS - SIGNAL-PROCESSING & SIGNAL CONTROL - FACTORY AUTOMATION, EMERGING TECHNOLOGIES, 1989, : 469 - 473
  • [4] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    [J]. PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286
  • [6] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [7] Identification of nonlinear dynamic systems as a composition of local linear parametric or state-space models
    Babuska, R
    Keizer, J
    Verhaegen, M
    [J]. (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 675 - 680
  • [8] Composite local-linear state-space models for the behavioral modeling off digital devices
    Stievano, I. S.
    Siviero, C.
    Canavero, F. G.
    Maio, I. A.
    [J]. 2007 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, : 508 - +
  • [9] A SUBSPACE FITTING METHOD FOR IDENTIFICATION OF LINEAR STATE-SPACE MODELS
    SWINDLEHURST, A
    ROY, R
    OTTERSTEN, B
    KAILATH, T
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) : 311 - 316
  • [10] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338