Background Modeling for Video Sequences by Stacked Denoising Autoencoders

被引:4
|
作者
Garcia-Gonzalez, Jorge [1 ]
Ortiz-de-Lazcano-Lobato, Juan M. [1 ]
Luque-Baena, Rafael M. [1 ]
Molina-Cabello, Miguel A. [1 ]
Lopez-Rubio, Ezequiel [1 ]
机构
[1] Univ Malaga, Dept Comp Languages & Comp Sci, Bulevar Louis Pasteur 35, E-29071 Malaga, Spain
关键词
Background modeling; Deep learning; Autoencoders;
D O I
10.1007/978-3-030-00374-6_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the analysis and extraction of relevant information in visual data flows is of paramount importance. These images sequences can last for hours, which implies that the model must adapt to all kinds of circumstances so that the performance of the system does not decay over time. In this paper we propose a methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise. Thus, stacked denoising autoencoders are applied to generate a set of robust characteristics for each region or patch of the image, which will be the input of a probabilistic model to determine if that region is background or foreground. The evaluation of a set of heterogeneous sequences results in that, although our proposal is similar to the classical methods existing in the literature, the inclusion of noise in these sequences causes drastic performance drops in the competing methods, while in our case the performance stays or falls slightly.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [1] Background Modeling by Shifted Tilings of Stacked Denoising Autoencoders
    Garcia-Gonzalez, Jorge
    Ortiz-de-Lazcano-Lobato, Juan M.
    Luque-Baena, Rafael M.
    Lopez-Rubio, Ezequiel
    [J]. FROM BIOINSPIRED SYSTEMS AND BIOMEDICAL APPLICATIONS TO MACHINE LEARNING, PT II, 2019, 11487 : 307 - 316
  • [2] Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences
    Garcia-Gonzalez, Jorge
    Ortiz-de-Lazcano-Lobato, Juan M.
    Luque-Baena, Rafael M.
    Molina-Cabello, Miguel A.
    Lopez-Rubio, Ezequiel
    [J]. PATTERN RECOGNITION LETTERS, 2019, 125 : 481 - 487
  • [3] Denoising stacked autoencoders for transient electromagnetic signal denoising
    Lin, Fanqiang
    Chen, Kecheng
    Wang, Xuben
    Cao, Hui
    Chen, Danlei
    Chen, Fanzeng
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2019, 26 (01) : 13 - 23
  • [4] Marginalizing Stacked Linear Denoising Autoencoders
    Chen, Minmin
    Weinberger, Kilian Q.
    Xu, Zhixiang
    Sha, Fei
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 3849 - 3875
  • [5] Surveillance Video Denoising Based on Background Modeling
    Liu, Yunhai
    Xie, Baolei
    Guo, Heyi
    Quan, Xiaochen
    Yang, Shengtian
    [J]. 2008 THIRD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA, VOLS 1-3, 2008, : 1071 - 1075
  • [6] Complex-Valued Stacked Denoising Autoencoders
    Popa, Calin-Adrian
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 64 - 71
  • [7] Stacked denoising autoencoders for sentiment analysis: a review
    Sagha, Hesam
    Cummins, Nicholas
    Schuller, Bjoern
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 7 (05)
  • [8] Double-Layer Stacked Denoising Autoencoders for Regression
    Fernandez-Garcia, Maria-Elena
    Ros-Ros, Antonio
    Hernandez, Eloy Hontoria
    Figueiras-Vidal, Anibal R.
    Sancho-Gomez, Jose-Luis
    [J]. BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II, 2022, 13259 : 337 - 345
  • [9] Hyperspectral anomaly detection based on stacked denoising autoencoders
    Zhao, Chunhui
    Li, Xueyuan
    Zhu, Haifeng
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [10] Manifold regularized stacked denoising autoencoders with feature selection
    Yu, Jianbo
    [J]. NEUROCOMPUTING, 2019, 358 : 235 - 245