The SU(N) self-dual sine-Gordon model and competing orders

被引:5
|
作者
Lecheminant, P.
Totsuka, K.
机构
[1] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
bosonization; conformal field theory (theory); spin chains; ladders and planes (theory); spin liquids (theory);
D O I
10.1088/1742-5468/2006/12/L12001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the low-energy properties of a generalized quantum sine-Gordon model in one dimension with a self-dual symmetry. This model describes a class of quantum phase transitions that stems from the competition of different orders. This SU(N) self-dual sine-Gordon model is shown to be equivalent to an SO(N)(2) conformal field theory perturbed by a current-current interaction, which is related to an integrable fermionic model introduced by Andrei and Destri. In the context of spin-chain problems, we give several realizations of this self-dual sine-Gordon model and discuss the universality class of the transitions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Criticality in self-dual sine-Gordon models
    Lecheminant, P
    Gogolin, AO
    Nersesyan, AA
    NUCLEAR PHYSICS B, 2002, 639 (03) : 502 - 523
  • [2] CANONICAL REDUCTION OF SELF-DUAL YANG-MILLS THEORY TO SINE-GORDON AND LIOUVILLE THEORIES
    GE, ML
    WANG, L
    WU, YS
    PHYSICS LETTERS B, 1994, 335 (02) : 136 - 142
  • [3] Integrability of the N=2 boundary sine-Gordon model
    Mattik, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (10): : 2383 - 2395
  • [4] The boundary N=2 supersymmetric sine-Gordon model
    Nepomechie, RI
    PHYSICS LETTERS B, 2001, 516 (3-4) : 376 - 382
  • [5] The Dynamical Sine-Gordon Model
    Hairer, Martin
    Shen, Hao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) : 933 - 989
  • [6] Lattice sine-Gordon model
    Flamino, James
    Giedt, Joel
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [7] Chiral sine-Gordon model
    Yanagisawa, Takashi
    EPL, 2016, 113 (04)
  • [8] Noncommutative sine-Gordon model
    Lechtenfeld, O
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (5-6): : 500 - 505
  • [9] The Dynamical Sine-Gordon Model
    Martin Hairer
    Hao Shen
    Communications in Mathematical Physics, 2016, 341 : 933 - 989
  • [10] A DISCRETE SINE-GORDON MODEL
    DING, GH
    XU, BW
    ZHANG, YM
    PHYSICS LETTERS B, 1993, 317 (1-2) : 107 - 111