Disk-annulus transition and localization in random non-Hermitian tridiagonal matrices

被引:6
|
作者
Molinari, L. G. [1 ,2 ]
Lacagnina, G. [2 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
关键词
D O I
10.1088/1751-8113/42/39/395204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Eigenvalues and localization of eigenvectors of non-Hermitian tridiagonal periodic random matrices are studied by means of the Hatano-Nelson deformation. The support of the spectrum undergoes a disk to annulus transition, with inner radius measured by the complex Thouless formula. The inner bounding circle and the annular halo are structures that correspond to the two arcs and wings observed by Hatano and Nelson in deformed Hermitian models, and are explained in terms of localization of eigenstates via a spectral duality and the argument principle. This disk-annulus transition is reminiscent of Feinberg and Zee's transition observed in full complex random matrices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk
    G. M. Cicuta
    M. Contedini
    L. Molinari
    Journal of Statistical Physics, 2000, 98 : 685 - 699
  • [2] Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk
    Cicuta, GM
    Contedini, M
    Molinari, L
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 685 - 699
  • [3] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [4] Eigenvalue repulsion and eigenvector localization in sparse non-Hermitian random matrices
    Zhang, Grace H.
    Nelson, David R.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [5] The Double Dyson Index β Effect in Non-Hermitian Tridiagonal Matrices
    Goulart, Cleverson A.
    Pato, Mauricio P.
    ENTROPY, 2023, 25 (06)
  • [6] Eigenvector correlations across the localization transition in non-Hermitian power-law banded random matrices
    Ghosh, Soumi
    Kulkarni, Manas
    Roy, Sthitadhi
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [7] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [8] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [9] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [10] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105