Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects

被引:244
|
作者
Parikh, SS
Walcher, G
Jones, GD
Slupphaug, G
Krokan, HE
Blackburn, GM [1 ]
Tainer, JA
机构
[1] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[4] Kodak Ltd, Liverpool L33 7UF, Merseyside, England
[5] Norwegian Univ Sci & Technol, Inst Canc Res & Mol Biol, N-7489 Trondheim, Norway
关键词
D O I
10.1073/pnas.97.10.5083
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil-DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Angstrom resolution substrate analogue and 2.0-Angstrom resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme-DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
引用
收藏
页码:5083 / 5088
页数:6
相关论文
共 50 条
  • [1] Uracil-DNA glycosylase efficiency is modulated by substrate rigidity
    Orndorff, Paul B.
    Poddar, Souvik
    Owens, Aerial M.
    Kumari, Nikita
    Ugaz, Bryan T.
    Amin, Samrat
    Van Horn, Wade D.
    van der Vaart, Arjan
    Levitus, Marcia
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Uracil-DNA glycosylase efficiency is modulated by substrate rigidity
    Paul B. Orndorff
    Souvik Poddar
    Aerial M. Owens
    Nikita Kumari
    Bryan T. Ugaz
    Samrat Amin
    Wade D. Van Horn
    Arjan van der Vaart
    Marcia Levitus
    [J]. Scientific Reports, 13
  • [3] Uracil-DNA glycosylase efficiency is modulated by substrate rigidity
    Poddar, Souvik
    Pratt, Aerial M.
    Orndorff, Paul B.
    van der Vaart, Arjan
    Van Horn, Wade D.
    Levitus, Marcia
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 149A - 149A
  • [4] Uracil-DNA glycosylase acts by substrate autocatalysis
    Aaron R. Dinner
    G. Michael Blackburn
    Martin Karplus
    [J]. Nature, 2001, 413 : 752 - 755
  • [5] Uracil-DNA glycosylase acts by substrate autocatalysis
    Dinner, AR
    Blackburn, GM
    Karplus, M
    [J]. NATURE, 2001, 413 (6857) : 752 - 755
  • [6] Direct measurement of the substrate preference of uracil-DNA glycosylase
    Panayotou, G
    Brown, T
    Barlow, T
    Pearl, LH
    Savva, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) : 45 - 50
  • [7] Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase
    Putnam, CD
    Shroyer, MJN
    Lundquist, AJ
    Mol, CD
    Arvai, AS
    Mosbaugh, DW
    Tainer, JA
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (02) : 331 - 346
  • [8] Uracil-DNA Glycosylase UNG Promotes Tet-mediated DNA Demethylation
    Xue, Jian-Huang
    Xu, Gui-Fang
    Gu, Tian-Peng
    Chen, Guo-Dong
    Han, Bin-Bin
    Xu, Zhi-Mei
    Bjoras, Magnar
    Krokan, Hans E.
    Xu, Guo-Liang
    Du, Ya-Rui
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (02) : 731 - 738
  • [9] Substrate specificity of homogeneous monkeypox virus Uracil-DNA glycosylase
    Duraffour, Sophie
    Ishchenko, Alexander A.
    Saparbaev, Murat
    Crance, Jean-Marc
    Garin, Daniel
    [J]. BIOCHEMISTRY, 2007, 46 (42) : 11874 - 11881
  • [10] Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase
    Scaramozzino, N
    Sanz, G
    Crance, JM
    Saparbaev, M
    Drillien, R
    Laval, J
    Kavli, B
    Garin, D
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (16) : 4950 - 4957