Ratatosk: hybrid error correction of long reads enables accurate variant calling and assembly

被引:32
|
作者
Holley, Guillaume [1 ]
Beyter, Doruk [1 ]
Ingimundardottir, Helga [1 ]
Moller, Peter L. [2 ]
Kristmundsdottir, Snodis [1 ,3 ]
Eggertsson, Hannes P. [1 ]
Halldorsson, Bjarni, V [1 ,3 ]
机构
[1] Amgen Inc, deCODE Genet, Reykjavik, Iceland
[2] Aarhus Univ, Dept Biomed, Aarhus, Denmark
[3] Reykjavik Univ, Sch Technol, Reykjavik, Iceland
关键词
GENOME; LIBRARY;
D O I
10.1186/s13059-020-02244-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A major challenge to long read sequencing data is their high error rate of up to 15%. We present Ratatosk, a method to correct long reads with short read data. We demonstrate on 5 human genome trios that Ratatosk reduces the error rate of long reads 6-fold on average with a median error rate as low as 0.22 %. SNP calls in Ratatosk corrected reads are nearly 99 % accurate and indel calls accuracy is increased by up to 37 %. An assembly of Ratatosk corrected reads from an Ashkenazi individual yields a contig N50 of 45 Mbp and less misassemblies than a PacBio HiFi reads assembly.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Ratatosk: hybrid error correction of long reads enables accurate variant calling and assembly
    Guillaume Holley
    Doruk Beyter
    Helga Ingimundardottir
    Peter L. Møller
    Snædis Kristmundsdottir
    Hannes P. Eggertsson
    Bjarni V. Halldorsson
    Genome Biology, 22
  • [2] Efficient Hybrid De Novo Error Correction and Assembly for Long Reads
    Kchouk, Mehdi
    Elloumi, Mourad
    2016 27TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2016, : 88 - 92
  • [3] NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads
    Hu, Jiang
    Wang, Zhuo
    Sun, Zongyi
    Hu, Benxia
    Ayoola, Adeola Oluwakemi
    Liang, Fan
    Li, Jingjing
    Sandoval, Jose R.
    Cooper, David N.
    Ye, Kai
    Ruan, Jue
    Xiao, Chuan-Le
    Wang, Depeng
    Wu, Dong-Dong
    Wang, Sheng
    GENOME BIOLOGY, 2024, 25 (01)
  • [4] Hybrid Error Correction approach and DeNovo Assembly for MinIon Sequencing Long Reads
    Kchouk, Mehdi
    Elloumi, Mourad
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 122 - 125
  • [5] Jabba: hybrid error correction for long sequencing reads
    Giles Miclotte
    Mahdi Heydari
    Piet Demeester
    Stephane Rombauts
    Yves Van de Peer
    Pieter Audenaert
    Jan Fostier
    Algorithms for Molecular Biology, 11
  • [6] Jabba: hybrid error correction for long sequencing reads
    Miclotte, Giles
    Heydari, Mahdi
    Demeester, Piet
    Rombauts, Stephane
    Van de Peer, Yves
    Audenaert, Pieter
    Fostier, Jan
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2016, 11
  • [7] Efficient assembly of nanopore reads via highly accurate and intact error correction
    Chen, Ying
    Nie, Fan
    Xie, Shang-Qian
    Zheng, Ying-Feng
    Dai, Qi
    Bray, Thomas
    Wang, Yao-Xin
    Xing, Jian-Feng
    Huang, Zhi-Jian
    Wang, De-Peng
    He, Li-Juan
    Luo, Feng
    Wang, Jian-Xin
    Liu, Yi-Zhi
    Xiao, Chuan-Le
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Efficient assembly of nanopore reads via highly accurate and intact error correction
    Ying Chen
    Fan Nie
    Shang-Qian Xie
    Ying-Feng Zheng
    Qi Dai
    Thomas Bray
    Yao-Xin Wang
    Jian-Feng Xing
    Zhi-Jian Huang
    De-Peng Wang
    Li-Juan He
    Feng Luo
    Jian-Xin Wang
    Yi-Zhi Liu
    Chuan-Le Xiao
    Nature Communications, 12
  • [9] Local read haplotagging enables accurate long-read small variant calling
    Kolesnikov, Alexey
    Cook, Daniel
    Nattestad, Maria
    Brambrink, Lucas
    McNulty, Brandy
    Gorzynski, John
    Goenka, Sneha
    Ashley, Euan A.
    Jain, Miten
    Miga, Karen H.
    Paten, Benedict
    Chang, Pi-Chuan
    Carroll, Andrew
    Shafin, Kishwar
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] HECIL: A Hybrid Error Correction Algorithm for Long Reads with Iterative Learning
    Choudhury, Olivia
    Chakrabarty, Ankush
    Emrich, Scott J.
    SCIENTIFIC REPORTS, 2018, 8