A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse

被引:4
|
作者
Allende-Cid, Hector [1 ]
Zamora, Juan [2 ]
Alfaro-Faccio, Pedro [3 ]
Francisca Alonso-Sanchez, Maria [4 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Escuela Ingn Informat, Valparaiso 2340025, Chile
[2] Pontificia Univ Catolica Valparaiso, Inst Estadist, Valparaiso 2340025, Chile
[3] Pontificia Univ Catolica Valparaiso, Inst Literatura & Ciencias Lenguaje, Vina Del Mar 2340025, Chile
[4] Univ Valparaiso, Ctr Invest Desarrollo Cognit & Lenguaje, Vina Del Mar 2391415, Chile
关键词
Applied machine learning; natural language processing; schizophrenia; LINGUISTIC CONTEXT; IDENTIFICATION;
D O I
10.1109/ACCESS.2019.2908620
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Schizophrenia is a chronic neurobiological disorder whose early detection has attracted significant attention from the clinical, psychiatric, and also artificial intelligence communities. This latter approach has been mainly focused on the analysis of neuroimaging and genetic data. A less explored strategy consists in exploiting the power of natural language processing (NLP) algorithms applied over narrative texts produced by schizophrenic subjects. In this paper, a novel dataset collected from a proper field study is presented. Also, grammatical traits discovered in narrative documents are used to build computational representations of texts, allowing an automatic classification of discourses generated by schizophrenic and non-schizophrenic subjects. The attained results showed that the use of the proposed computational representations along with machine learning techniques enables a novel and precise strategy to automatically detect texts produced by schizophrenic subjects.
引用
收藏
页码:45544 / 45553
页数:10
相关论文
共 50 条
  • [1] Automatic classification of magnetocardiograms with the machine learning approach
    Fenici, R
    Brisinda, D
    Meloni, AM
    Fenici, P
    EUROPEAN HEART JOURNAL, 2004, 25 : 560 - 560
  • [2] A machine learning approach to automatic music genre classification
    Silla, Carlos N.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    Journal of the Brazilian Computer Society, 2008, 14 (03) : 7 - 18
  • [3] Automatic tortuosity classification using machine learning approach
    Turior, Rashmi
    Chutinantvarodom, Pornthep
    Uyyanonvara, Bunyarit
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4, 2013, 241-244 : 3143 - 3147
  • [4] An Automatic Flower Classification Approach Using Machine Learning Algorithms
    Zawbaa, Hossam M.
    Abbass, Mona
    Basha, Sameh H.
    Hazman, Maryam
    Hassenian, Abul Ella
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 895 - 901
  • [5] A Machine Learning Approach for Subjectivity Classification Based on Positional and Discourse Features
    Chenlo, Jose M.
    Losada, David E.
    MULTIDISCIPLINARY INFORMATION RETRIEVAL, 2013, 8201 : 17 - 28
  • [6] Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach
    Worasawate, Denchai
    Sakunasinha, Panarit
    Chiangga, Surasak
    AGRIENGINEERING, 2022, 4 (01): : 32 - 47
  • [7] Machine learning based approach for automatic defect detection and classification in adhesive joints
    Smagulova, Damira
    Samaitis, Vykintas
    Jasiuniene, Elena
    NDT & E INTERNATIONAL, 2024, 148
  • [8] AUTOMATIC CLASSIFICATION OF ADRD CAREGIVERS' ONLINE INFORMATION WANTS: A MACHINE LEARNING APPROACH
    Ji, Yuelyu
    Zou, Ning
    Xie, Bo
    He, Daqing
    Wang, Zhendong
    INNOVATION IN AGING, 2022, 6 : 485 - 485
  • [9] Automatic Nile Tilapia Fish Classification Approach using Machine Learning Techniques
    Fouad, Mohamed Mostafa M.
    Zawbaa, Hossam M.
    El-Bendary, Nashwa
    Hassanien, Aboul Ella
    2013 13TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2013, : 173 - 178
  • [10] Automatic PDF Document Classification with Machine Learning
    Llacer Luna, Socrates
    Garigliotti, Dario
    Martinez Plumed, Fernando
    Ferri Ramirez, Cesar
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I, 2025, 15346 : 447 - 459