Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system

被引:25
|
作者
Ichitsubo, Tetsu [1 ]
Tokuda, Kazuya [1 ]
Yagi, Shunsuke [2 ]
Kawamori, Makoto [1 ]
Kawaguchi, Tomoya [1 ]
Doi, Takayuki [3 ]
Oishi, Masatsugu [4 ]
Matsubara, Eiichiro [1 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan
[2] Osaka Prefecture Univ, Nanosci & Nanotechnol Res Ctr, Osaka 5998570, Japan
[3] Kyoto Univ, Off Soc Acad Collaborat Innovat, Kyoto 6110011, Japan
[4] Kyoto Univ, Grad Sch Engn, Kyoto 6068501, Japan
关键词
DOMINO-CASCADE MODEL; ROOM-TEMPERATURE; LI-INSERTION/EXTRACTION; SPINODAL DECOMPOSITION; SYNCHROTRON-RADIATION; LITHIUM BATTERIES; MISCIBILITY GAP; SOLID-SOLUTION; KINETICS; STRAIN;
D O I
10.1039/c2ta01102f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By using phase-field computer simulations, we have investigated the effects of the coherent strain due to the phase separation in the olivine-type LiFePO4. In this system, the coherent elastic-strain energy due to the lattice mismatch between LiFePO4 and FePO4 phases accompanied by insertion and extraction of Li ions is considered to play a crucial role in the phase separation kinetics during the charge/discharge process. The present phase-field micromechanics simulations reveal several significant features of the LiFePO4/FePO4 system accompanying the coherent strain, such as the retardation of the phase separation, the charge rate dependence, the thermodynamic stability of coherent interfaces between dual phases, etc. Nucleation of the new phase is found to be fundamentally unlikely in terms of the elastic strain energy, except in the vicinity of the surface of the particles, and thus the phase separation would be dominated by the spinodal decomposition process. When the nucleus is present precedently, however, the phase separation can proceed in the mixture mode of the domino cascade and spinodal decomposition processes.
引用
收藏
页码:2567 / 2577
页数:11
相关论文
共 50 条
  • [1] Analysis of the FePO4 to LiFePO4 phase transition
    Allen, J. L.
    Jow, T. R.
    Wolfenstine, J.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) : 1031 - 1033
  • [2] Analysis of the FePO4 to LiFePO4 phase transition
    J. L. Allen
    T. R. Jow
    J. Wolfenstine
    Journal of Solid State Electrochemistry, 2008, 12 : 1031 - 1033
  • [3] Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition
    Allen, Jan L.
    Jow, T. Richard
    Wolfenstine, Jeffrey
    CHEMISTRY OF MATERIALS, 2007, 19 (08) : 2108 - 2111
  • [4] Electron microscopy study of the LiFePO4 to FePO4 phase transition
    Chen, GY
    Song, XY
    Richardson, TJ
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) : A295 - A298
  • [5] Preparation and performance of FePO4 precursor for LiFePO4
    Li Y.
    Wei R.
    Lu J.
    Yao Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (04): : 2227 - 2233
  • [6] Role of PO4 tetrahedron in LiFePO4 and FePO4 system
    Zeng, Yuewu
    MICROSCOPY RESEARCH AND TECHNIQUE, 2015, 78 (06) : 462 - 471
  • [7] Study of the Li-insertion/extraction process in LiFePO4/FePO4
    Ramana, C. V.
    Mauger, A.
    Gendron, F.
    Julien, C. M.
    Zaghib, K.
    JOURNAL OF POWER SOURCES, 2009, 187 (02) : 555 - 564
  • [8] Size-Dependent Staging and Phase Transition in LiFePO4/FePO4
    Zhu, Changbao
    Gu, Lin
    Suo, Liumin
    Popovic, Jelena
    Li, Hong
    Ikuhara, Yuichi
    Maier, Joachim
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (03) : 312 - 318
  • [9] On the preparation of multifunctional conversion coatings of FePO4/ LiFePO4
    Valverde-Perez, S.
    Figueroa, R.
    Novoa, X. R.
    Ramirez-Rico, D. S.
    Vivier, V.
    SURFACE & COATINGS TECHNOLOGY, 2024, 479
  • [10] On the preparation of multifunctional conversion coatings of FePO4/LiFePO4
    Valverde-Pérez, S.
    Figueroa, R.
    Nóvoa, X.R.
    Ramírez-Rico, D.S.
    Vivier, V.
    Surface and Coatings Technology, 2024, 479