Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle

被引:15
|
作者
Kunikawa, Keita [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9800874, Japan
关键词
MEAN-CURVATURE FLOW; GAUSS IMAGE; SINGULARITIES; MANIFOLDS;
D O I
10.1007/s00526-015-0826-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof for a Bernstein-type theorem of complete graphs of translating solitons in higher codimension. In the case of hypersurfaces, Bao-Shi showed that a translating soliton whose image of the Gauss map is contained in a compact subset in an open hemisphere is a hyperplane. This means that there is no nontrivial translating soliton whose slope is bounded. In the present article, we generalize this theorem in arbitrary codimension. Moreover we obtain an optimal growth condition which allows unbounded slopes. As a corollary, our result covers a classical Bernstein-type theorem for minimal submanifolds.
引用
收藏
页码:1331 / 1344
页数:14
相关论文
共 34 条
  • [1] Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle
    Keita Kunikawa
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1331 - 1344
  • [2] A Bernstein-type theorem for ξ-submanifolds with flat normal bundle in the Euclidean spaces
    Jiang, Xu-Yong
    Sun, He-Jun
    Zhao, Pei-Biao
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 36 - 43
  • [3] TRANSLATING SOLITONS IN ARBITRARY CODIMENSION
    Kunikawa, Keita
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (05) : 855 - 872
  • [4] A Bernstein-Type Theorem for Minimal Graphs of Higher Codimension via Singular Values
    Lulu Jing
    Ling Yang
    Vietnam Journal of Mathematics, 2021, 49 : 481 - 492
  • [5] A Bernstein-Type Theorem for Minimal Graphs of Higher Codimension via Singular Values
    Jing, Lulu
    Yang, Ling
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (02) : 481 - 492
  • [6] Bernstein type theorems with flat normal bundle
    Knut Smoczyk
    Guofang Wang
    Y. L. Xin
    Calculus of Variations and Partial Differential Equations, 2006, 26 : 57 - 67
  • [7] Bernstein type theorems with flat normal bundle
    Smoczyk, K
    Wang, GF
    Xin, YL
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (01) : 57 - 67
  • [8] Bernstein theorem for translating solitons of hypersurfaces
    Ma, Li
    Miquel, Vicente
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 115 - 132
  • [9] Bernstein theorem for translating solitons of hypersurfaces
    Li Ma
    Vicente Miquel
    manuscripta mathematica, 2020, 162 : 115 - 132
  • [10] Bernstein-type theorem for ϕ-Laplacian
    Maksymiuk J.
    Ciesielski J.
    Starostka M.
    Fixed Point Theory and Applications, 2019 (1)