Lindelof theorems for monotone Sobolev functions in Orlicz spaces on uniform domains

被引:0
|
作者
Futamura, Toshihide [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Daido Univ, Dept Math, Nagoya, Aichi 4578530, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Lindelof type theorem; monotone Sobolev functions; Orlicz spaces; uniform domains; Primary; Secondary; TRACES; LIMITS;
D O I
10.1002/mana.201800014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with Lindelof type theorems for monotone (in the sense of Lebesgue) Sobolev functions u on a uniform domain D subset of Rn satisfying integral(D) vertical bar del u vertical bar(z)(n-1) phi(del u(z)vertical bar)omega(delta(D)(z))dz < infinity where backward difference denotes the gradient, delta D(z) denotes the distance from z to the boundary partial differential D, phi is of log-type and omega is a weight function satisfying the doubling condition.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条