Generalized quantum tomographic maps

被引:5
|
作者
Asorey, M. [1 ]
Facchi, P. [2 ,3 ,4 ]
Man'ko, V. I. [5 ]
Marmo, G. [6 ,7 ,8 ]
Pascazio, S. [4 ,9 ,10 ]
Sudarshan, E. C. G. [11 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Univ Bari, MECENAS, I-70125 Bari, Italy
[4] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[5] PN Lebedev Phys Inst, Moscow 119991, Russia
[6] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy
[7] Univ Naples Federico II, MECENAS, I-80126 Naples, Italy
[8] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Univ Bari, MECENAS, I-70126 Bari, Italy
[11] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
俄罗斯基础研究基金会;
关键词
WIGNER FUNCTION; DENSITY-MATRIX; REPRESENTATION; VACUUM; SPACES; STATES;
D O I
10.1088/0031-8949/85/06/065001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some nonlinear generalizations of classical Radon tomography were introduced by Asorey et al (2008 Phys. Rev. A 77 042115), where the straight lines of the standard Radon map are replaced by quadratic curves (ellipses, hyperbolas and circles) or quadratic surfaces (ellipsoids, hyperboloids and spheres). We consider here the quantum version of this novel nonlinear approach and obtain, by the systematic use of the Weyl map, a tomographic encoding approach to quantum states. Nonlinear quantum tomograms admit a simple formulation within the framework of the star-product quantization scheme and the reconstruction formulae of the density operators are explicitly given in a closed form, with an explicit construction of quantizers and dequantizers. The role of symmetry groups behind the generalized tomographic maps is analyzed in some detail. We also introduce new generalizations of the standard singular dequantizers of the symplectic tomographic schemes, where the Dirac delta-distributions of operator-valued arguments are replaced by smooth window functions, giving rise to the new concept of thick quantum tomography. Applications in quantum state measurements of photons and matter waves are discussed.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Generalized tomographic maps
    Asorey, M.
    Facchi, P.
    Man'ko, V. I.
    Marmo, G.
    Pascazio, S.
    Sudarshan, E. C. G.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [2] Generalized tomographic maps and star-product formalism
    Asorey, M.
    Facchi, P.
    Man'ko, V. I.
    Marmo, G.
    Pascazio, S.
    Sudarshan, E. C. G.
    PHYSICA SCRIPTA, 2015, 90 (06)
  • [3] ON COMPLETELY POSITIVE MAPS IN GENERALIZED QUANTUM DYNAMICS
    SIMMONS, RF
    PARK, JL
    FOUNDATIONS OF PHYSICS, 1981, 11 (1-2) : 47 - 55
  • [4] Generalized quantum baker maps as perturbations of a simple kernel
    Ermann, Leonardo
    Saraceno, Marcos
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [5] ON COMPLETELY POSITIVE MAPS IN GENERALIZED QUANTUM DYNAMICS - REMARKS
    RAGGIO, GA
    PRIMAS, H
    FOUNDATIONS OF PHYSICS, 1982, 12 (04) : 433 - 435
  • [6] Quantum Maps with Memory from Generalized Lindblad Equation
    Tarasov, Vasily E.
    ENTROPY, 2021, 23 (05)
  • [7] Uncertainty relations for generalized quantum measurements and completely positive maps
    Ozwaw, M
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 773 - 784
  • [8] Structural physical approximations of unphysical maps and generalized quantum measurements
    Fiuraášek, Jaromiár
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 052315
  • [9] Generalized α-closed maps and α-generalized closed maps
    Devi, R
    Balachandran, K
    Maki, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (01): : 37 - 49
  • [10] GEODYNAMIC ANALYSIS OF TOMOGRAPHIC MAPS
    KHAIN, VE
    ZVEREV, AT
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (01): : 221 - 225