The Riemann Zeros as Spectrum and the Riemann Hypothesis

被引:17
|
作者
Sierra, German [1 ]
机构
[1] Univ Autonoma Madrid, CSIC, Inst Fis Teor, Madrid 28049, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 04期
关键词
zeta function; Polya-Hilbert conjecture; Riemann interferometer; RANDOM-MATRIX THEORY;
D O I
10.3390/sym11040494
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a spectral realization of the Riemann zeros based on the propagation of a massless Dirac fermion in a region of Rindler spacetime and under the action of delta function potentials localized on the square free integers. The corresponding Hamiltonian admits a self-adjoint extension that is tuned to the phase of the zeta function, on the critical line, in order to obtain the Riemann zeros as bound states. The model suggests a proof of the Riemann hypothesis in the limit where the potentials vanish. Finally, we propose an interferometer that may yield an experimental observation of the Riemann zeros.
引用
收藏
页数:37
相关论文
共 50 条