Bridges and random truncations of random matrices

被引:2
|
作者
Beffara, Vincent [1 ]
Donati-Martin, Catherine [2 ]
Rouault, Alain [2 ]
机构
[1] ENS Lyon, UMPA, UMR 5669, 46 Alle Italie, F-69364 Lyon 07, France
[2] Univ Versailles St Quentin, LMV UMR 8100, F-78035 Versailles, France
关键词
Random matrices; unitary ensemble; orthogonal ensemble; bivariate Brownian bridge; subordination; WEAK-CONVERGENCE; STOCHASTIC-PROCESSES; SEQUENCES; ENTRIES;
D O I
10.1142/S2010326314500063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let U be a Haar distributed matrix in U(n) or O(n). In a previous paper, we proved that after centering, the two-parameter process T-(n)(s, t) = Sigma(i <= left perpendicular ns right perpendicular,j <= left perpendicular nt right perpendicular) vertical bar U-ij vertical bar(2), s, t is an element of[0, 1] converges in distribution to the bivariate tied-down Brownian bridge. In the present paper, we replace the deterministic truncation of U by a random one, in which each row (respectively, column) is chosen with probability s (respectively, t) independently. We prove that the corresponding two-parameter process, after centering and normalization by n(-1/2) converges to a Gaussian process. On the way we meet other interesting convergences.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Truncations of random unitary matrices
    Zyczkowski, K
    Sommers, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (10): : 2045 - 2057
  • [2] Truncations of random orthogonal matrices
    Khoruzhenko, Boris A.
    Sommers, Hans-Juergen
    Zyczkowski, Karol
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [3] On the eigenvalues of truncations of random unitary matrices
    Meckes, Elizabeth
    Stewart, Kathryn
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [4] Truncations of random unitary matrices and Young tableaux
    Novak, J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [5] Eigenvalue rigidity for truncations of random unitary matrices
    Meckes, Elizabeth
    Stewart, Kathryn
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [6] Matrix Models and Eigenvalue Statistics for Truncations of Classical Ensembles of Random Unitary Matrices
    Rowan Killip
    Rostyslav Kozhan
    Communications in Mathematical Physics, 2017, 349 : 991 - 1027
  • [7] Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution
    Lin, Zhaofeng
    Qiu, Yanqi
    Wang, Kai
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (01)
  • [8] Matrix Models and Eigenvalue Statistics for Truncations of Classical Ensembles of Random Unitary Matrices
    Killip, Rowan
    Kozhan, Rostyslav
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (03) : 991 - 1027
  • [9] Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution
    Zhaofeng Lin
    Yanqi Qiu
    Kai Wang
    Complex Analysis and Operator Theory, 2023, 17
  • [10] Stochastic gradient algorithm with random truncations
    Tadic, V
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 101 (02) : 261 - 284