On the monotone error rule for parameter choice in iterative and continuous regularization methods

被引:32
|
作者
Hämarik, U
Tautenhahn, U
机构
[1] Univ Tartu, Inst Appl Math, EE-50409 Tartu, Estonia
[2] Univ Appl Sci Zittau Gorlitz, Dept Math, D-02763 Zittau, Germany
来源
BIT | 2001年 / 41卷 / 05期
关键词
ill-posed problems; inverse problems; regularization methods; Tikhonov regularization; iterative regularization; steepest descent; minimal error method; regularization parameter; alpha-processes; parameter choice; stopping rule; convergence rates;
D O I
10.1023/A:1021945429767
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider in Hilbert spaces linear ill-posed problems Ax = y with noisy data y(delta) satisfying parallel to y(delta) - yparallel to less than or equal to delta. Regularized approximations x(r)(delta) to the minimum-norm solution x(dagger) of Ax = y are constructed by continuous regularization methods or by iterative methods. For the choice of the regularization parameter r (the stopping index n in iterative methods) the following monotone error rule (ME rule) is used: we choose r = r(ME) (n = n(ME)) as the largest r - value with the guaranteed monotonical decrease of the error parallel tox(r)(delta) - x(dagger)parallel to for r is an element of [0, r(ME)] (parallel tox(n)(delta) - x(dagger)parallel to < ∥ x(n-1)(delta) - x(dagger)parallel to for n = 1, 2,..., n(ME)). Main attention is paid to iterative methods of gradient type and to nonstationary implicit iteration methods. As shown, the ME rule leads for many methods to order optimal error bounds. Comparisons with other rules for the choice of the stopping index are made and numerical examples are given.
引用
收藏
页码:1029 / 1038
页数:10
相关论文
共 50 条
  • [1] On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods
    U. Hämarik
    U. Tautenhahn
    [J]. BIT Numerical Mathematics, 2001, 41 : 1029 - 1038
  • [2] On the monotone error rule for choosing the regularization parameter in ill-posed problems
    Hämarik, U
    Tautenhahn, U
    [J]. ILL-POSED AND NON-CLASSICAL PROBLEMS OF MATHEMATICAL PHYSICS AND ANALYSIS, PROCEEDINGS, 2003, : 27 - 55
  • [3] Regularization and Iterative Methods for Monotone Variational Inequalities
    Xu, Xiubin
    Xu, Hong-Kun
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [4] Regularization and Iterative Methods for Monotone Variational Inequalities
    Xiubin Xu
    Hong-Kun Xu
    [J]. Fixed Point Theory and Applications, 2010
  • [5] Empirical risk minimization as parameter choice rule for general linear regularization methods
    Li, Housen
    Werner, Frank
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 405 - 427
  • [6] Regularization and iterative methods for monotone inverse variational inequalities
    Xue-ping Luo
    Jun Yang
    [J]. Optimization Letters, 2014, 8 : 1261 - 1272
  • [7] Regularization and iterative methods for monotone inverse variational inequalities
    Luo, Xue-ping
    Yang, Jun
    [J]. OPTIMIZATION LETTERS, 2014, 8 (04) : 1261 - 1272
  • [8] SOME CONTINUOUS REGULARIZATION METHODS FOR MONOTONE EQUATIONS
    RYAZANTSEVA, IP
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1994, 34 (01) : 1 - 7
  • [9] ON THE CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE FOR TIKHONOV REGULARIZATION
    Gockenbach, Mark S.
    Gorgin, Elaheh
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2694 - A2719
  • [10] Iterative choice of the optimal regularization parameter in TV image deconvolution
    Sixou, B.
    Toma, A.
    Denis, L.
    Peyrin, F.
    [J]. 3RD INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP 2013), 2013, 464