A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data

被引:25
|
作者
Jongs, Niels [1 ]
Jagesar, Raj [1 ]
van Haren, Neeltje E. M. [2 ,3 ]
Penninx, Brenda W. J. H. [4 ]
Reus, Lianne [5 ]
Visser, Pieter J. [5 ]
van der Wee, Nic J. A. [6 ,7 ]
Koning, Ina M. [8 ]
Arango, Celso [9 ]
Sommer, Iris E. C. [3 ]
Eijkemans, Marinus J. C. [10 ]
Vorstman, Jacob A. [11 ,12 ,13 ]
Kas, Martien J. [1 ]
机构
[1] Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands
[2] Erasmus MC, Dept Child & Adolescent Psychiat Psychol, Rotterdam, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Psychiat, Dept Neurosci, Groningen, Netherlands
[4] Vrije Univ, Amsterdam UMC, Dept Psychiat & Amsterdam Neurosci, Amsterdam, Netherlands
[5] Vrije Univ Amsterdam, Amsterdam UMC, Dept Neurol, Amsterdam Neurosci,Alzheimer Ctr Amsterdam, Amsterdam, Netherlands
[6] Leiden Univ, Med Ctr, Dept Psychiat, Leiden, Netherlands
[7] Leiden Univ, Med Ctr, Leiden Inst Brain & Cognit, Leiden, Netherlands
[8] Univ Utrecht, Dept Social & Behav Sci, Interdisciplinary Social Sci Youth Studies, Utrecht, Netherlands
[9] Univ Complutense, Sch Med, IiSGM, CIBERSAM,Hosp Gen Univ Gregorio Maranon,Inst Psyc, Madrid, Spain
[10] Univ Med Ctr Utrecht, Dept Biostat & Res Support, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[11] Hosp Sick Children, Dept Psychiat, Toronto, ON, Canada
[12] Univ Toronto, Toronto, ON, Canada
[13] Hosp Sick Children, Res Inst, Program Genet & Genome Biol, Toronto, ON, Canada
基金
欧盟地平线“2020”;
关键词
HEALTH;
D O I
10.1038/s41398-020-00893-4
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
The use of smartphone-based location data to quantify behavior longitudinally and passively is rapidly gaining traction in neuropsychiatric research. However, a standardized and validated preprocessing framework for deriving behavioral phenotypes from smartphone-based location data is currently lacking. Here, we present a preprocessing framework consisting of methods that are validated in the context of geospatial data. This framework aims to generate context-enriched location data by identifying stationary, non-stationary, and recurrent stationary states in movement patterns. Subsequently, this context-enriched data is used to derive a series of behavioral phenotypes that are related to movement. By using smartphone-based location data collected from 245 subjects, including patients with schizophrenia, we show that the proposed framework is effective and accurate in generating context-enriched location data. This data was subsequently used to derive behavioral readouts that were sensitive in detecting behavioral nuances related to schizophrenia and aging, such as the time spent at home and the number of unique places visited. Overall, our results indicate that the proposed framework reliably preprocesses raw smartphone-based location data in such a manner that relevant behavioral phenotypes of interest can be derived.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data
    Niels Jongs
    Raj Jagesar
    Neeltje E. M. van Haren
    Brenda W. J. H. Penninx
    Lianne Reus
    Pieter J. Visser
    Nic J. A. van der Wee
    Ina M. Koning
    Celso Arango
    Iris E. C. Sommer
    Marinus J. C. Eijkemans
    Jacob A. Vorstman
    Martien J. Kas
    [J]. Translational Psychiatry, 10
  • [2] SMARTPHONE-BASED ENVIRONMENTAL SENSING USING DEVICE LOCATION AS METADATA
    Fujinami, Kaori
    [J]. INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2016, 9 (04): : 2257 - 2275
  • [3] Conducting Visitor Studies Using Smartphone-Based Location Sensing
    Moussouri, Theano
    Roussos, George
    [J]. ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE, 2015, 8 (03):
  • [4] Quantifying personal exposure to air pollution from smartphone-based location data
    Finazzi, Francesco
    Paci, Lucia
    [J]. BIOMETRICS, 2019, 75 (04) : 1356 - 1366
  • [5] Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors
    Owoh, Nsikak Pius
    Singh, Manmeet Mahinderjit
    Zaaba, Zarul Fitri
    [J]. SENSORS, 2018, 18 (07)
  • [6] A Smartphone-based System for Assessing Intraocular Pressure
    Mariakakis, A.
    Wang, E.
    Patel, S.
    Wen, J. C.
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4353 - 4356
  • [7] Design and Implementation of a Network Robotic Framework Using a Smartphone-Based Platform
    Lim, Jongil
    Tewolde, Girma S.
    Kwon, Jaerock
    Choi, Seyeong
    [J]. IEEE ACCESS, 2019, 7 : 59357 - 59368
  • [8] Smartphone-Based Data Collection in Ophthalmology
    Raber, Florian Philipp
    Gerbutavicius, Rokas
    Wolf, Armin
    Kortuem, Karsten
    [J]. KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2020, 237 (12) : 1420 - 1428
  • [9] Smartphone-based User Location Tracking in Indoor Environment
    Viet-Cuong Ta
    Vaufreydaz, Dominique
    Trung-Kien Dao
    Castelli, Eric
    [J]. 2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2016,
  • [10] A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor
    Kostikis, N.
    Hristu-Varsakelis, D.
    Arnaoutoglou, M.
    Kotsavasiloglou, C.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (06) : 1835 - 1842