Spin-Based CMOS-Compatible Memories

被引:0
|
作者
Sverdlov, Viktor [1 ]
Selberherr, Siegfried [2 ]
机构
[1] TU Wien, Christian Doppler Lab Nonvolatile Magnetoresist M, Vienna, Austria
[2] TU Wien, Inst Microelect, Vienna, Austria
关键词
Spin-transfere torque MRAM; spin-orbit MRAM; perpendicular magnetization; magnetic field free switching; two-pulse switching;
D O I
10.1109/inec.2019.8853848
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With CMOS device scaling slowing down, exploring new devices' working principles becomes paramount. The electron spin, as a complement to the charge, attracts much attention. The electron spin is characterized by the two well-defined projections on a given axis and is suitable for digital applications. Magnetic tunnel junctions (MTJs) feature different resistances in parallel and antiparallel magnetization configuration and enable spin-based types of non-volatile magnetic memories. MTJs are quite CMOS compatible as they are fabricated with a CMOS-friendly process. The relative magnetization configuration is manipulated by means of a spin-transfer torque (STT) acting on the free layer. The electrically addressable non-volatile STT memory is nearing mass production for stand-alone and embedded applications. The current status and modeling approaches of state-of-the art STT and spin-orbit torque memory are briefly reviewed.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Spin-Based CMOS-Compatible Devices
    Sverdlov, Viktor
    Selberherr, Siegfried
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 42 - 49
  • [2] Spin-based quantum computing in silicon CMOS-compatible platforms
    Dzurak, A. S.
    [J]. 2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [3] CMOS-compatible VCSELs
    Viktorovitch, Pierre
    Sciancalepore, Corrado
    Ben Bakir, Badhise
    Letartre, Xavier
    Olivier, Nicolas
    Seassal, Christian
    Harduin, Julie
    [J]. 2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 949 - +
  • [4] CMOS-compatible graphene
    Thomas, Stuart
    [J]. NATURE ELECTRONICS, 2018, 1 (12): : 612 - 612
  • [5] CMOS-compatible graphene
    Stuart Thomas
    [J]. Nature Electronics, 2018, 1 : 612 - 612
  • [6] CMOS-Compatible Gas Sensors
    Filipovic, L.
    Selberherr, S.
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 9 - 16
  • [7] CMOS-Compatible Spintronic Devices
    Sverdlov, Viktor
    Ghosh, Joydeep
    Makarov, Alexander
    Windbacher, Homas
    Selberherr, Siegfried
    [J]. 2015 30TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO), 2015,
  • [8] CMOS-Compatible Optoelectronic Imagers
    Bi, Cheng
    Liu, Yanfei
    [J]. COATINGS, 2022, 12 (11)
  • [9] CMOS-compatible LVOF-based visible microspectrometer
    Emadi, Arvin
    Wu, Huaiwen
    de Graaf, Ger
    Wolffenbuttel, Reinoud F.
    [J]. NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES III, 2010, 7680
  • [10] Ferroelectric Hafnium Oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories
    Mueller, J.
    Boescke, T. S.
    Mueller, S.
    Yurchuk, E.
    Polakowski, P.
    Paul, J.
    Martin, D.
    Schenk, T.
    Khullar, K.
    Kersch, A.
    Weinreich, W.
    Riedel, S.
    Seidel, K.
    Kumar, A.
    Arruda, T. M.
    Kalinin, S. V.
    Schloesser, T.
    Boschke, R.
    van Bentum, R.
    Schroeder, U.
    Mikolajick, T.
    [J]. 2013 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2013,