Numerical methods for multivariate highly oscillatory integrals

被引:6
|
作者
Siraj-ul-Islam [1 ]
Zaman, Sakhi [1 ]
机构
[1] Univ Engn & Technol Peshawar, Dept Basic Sci, Peshawar, Pakistan
关键词
Multivariate highly oscillatory integrands; meshless collocation method; stationary and resonance point(s); hybrid and Haar functions; 65GXX; 65Mxx; 65Txx; 65Yxx; EFFICIENT QUADRATURE; DERIVATIVES; POINTS; RULES;
D O I
10.1080/00207160.2017.1322202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new algorithms are proposed for numerical evaluation of multivariate highly oscillatory integrals having critical point(s) over piecewise smooth rectangular and non-rectangular domains. Multi-resolution analysis is used to take care of the critical point(s). Theoretical error bounds of the component methods of the new algorithms are found. Accuracy of the proposed algorithms is validated numerically on benchmark tests. Numerical results are compared with the methods available in the literature to ascertain stable and accurate performance of the new algorithms.
引用
收藏
页码:1024 / 1046
页数:23
相关论文
共 50 条
  • [1] Quadrature methods for multivariate highly oscillatory integrals using derivatives
    Iserles, Arieh
    Norsett, Syvert P.
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1233 - 1258
  • [2] Numerical solutions of highly oscillatory integrals
    Molabahrami, A.
    Khani, F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) : 657 - 664
  • [3] The construction of cubature rules for multivariate highly oscillatory integrals
    Huybrechs, Daan
    Vandewalle, Stefan
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (260) : 1955 - 1980
  • [4] On the computation of highly oscillatory multivariate integrals with stationary points
    Iserles, A.
    Norsett, S. P.
    [J]. BIT NUMERICAL MATHEMATICS, 2006, 46 (03) : 549 - 566
  • [5] On the computation of highly oscillatory multivariate integrals with stationary points
    A. Iserles
    S. P. Nørsett
    [J]. BIT Numerical Mathematics, 2006, 46 : 549 - 566
  • [6] Efficient numerical methods for Cauchy principal value integrals with highly oscillatory integrands
    Xu, Zhenhua
    Lv, Zhanmei
    Geng, Hongrui
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (03) : 1287 - 1314
  • [7] Efficient numerical methods for Cauchy principal value integrals with highly oscillatory integrands
    Zhenhua Xu
    Zhanmei Lv
    Hongrui Geng
    [J]. Numerical Algorithms, 2022, 91 : 1287 - 1314
  • [8] QUADRATURE METHODS FOR HIGHLY OSCILLATORY SINGULAR INTEGRALS
    Gao, Jing
    Condon, Marissa
    Iserles, Arieh
    Gilvey, Benjamin
    Trevelyan, Jon
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (02) : 227 - 260
  • [9] On quadrature methods for highly oscillatory integrals and their implementation
    Iserles, A
    Norsett, S
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (04) : 755 - 772
  • [10] Levin methods for highly oscillatory integrals with singularities
    Wang, Yinkun
    Xiang, Shuhuang
    [J]. SCIENCE CHINA-MATHEMATICS, 2022, 65 (03) : 603 - 622