Snowflake Divertor Experiments in the DIII-D, NSTX, and NSTX-U Tokamaks Aimed at the Development of the Divertor Power Exhaust Solution

被引:16
|
作者
Soukhanovskii, V. A. [1 ]
Allen, S. L. [1 ]
Fenstermacher, M. E. [1 ]
Lasnier, C. J. [1 ]
Makowski, M. A. [1 ]
McLean, A. G. [1 ]
Meier, E. T. [1 ]
Meyer, W. H. [1 ]
Rognlien, T. D. [1 ]
Ryutov, D. D. [1 ]
Scotti, F. [1 ]
Kolemen, E. [2 ]
Bell, R. E. [2 ]
Diallo, A. [2 ]
Gerhardt, S. [2 ]
Kaita, R. [2 ]
Kaye, S. [2 ]
LeBlanc, B. P. [2 ]
Maingi, R. [2 ]
Menard, J. E. [2 ]
Podesta, M. [2 ]
Roquemore, A. L. [2 ]
Groebner, R. J. [3 ]
Hyatt, A. W. [3 ]
Leonard, A. W. [3 ]
Osborne, T. H. [3 ]
Petrie, T. W. [3 ]
Ahn, J. -W. [4 ]
Raman, R. [5 ]
Watkins, J. G. [6 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] Univ Washington, Seattle, WA 98195 USA
[6] Sandia Natl Labs, Livermore, CA 94551 USA
关键词
Divertors; plasma materials interactions; tokamaks; SCRAPE-OFF LAYER; PLASMA; PHYSICS;
D O I
10.1109/TPS.2016.2625325
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment of the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower n(e), and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D-2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D-2-seeded SF divertor at P-SOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected P-SOL similar or equal to 9 MW case. The radiative SF divertor with carbon impurity provides a wider n(e) operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (see standard divertor).
引用
收藏
页码:3445 / 3455
页数:11
相关论文
共 50 条
  • [1] Developing snowflake divertor physics basis in the DIII-D, NSTX and NSTX-U tokamaks aimed at the divertor power exhaust solution
    Soukhanovskii, V. A.
    Allen, S. L.
    Fenstermacher, M. E.
    Lasnier, C. J.
    Makowski, M. A.
    McLean, A. G.
    Meier, E. T.
    Meyer, W. H.
    Rognlien, T. D.
    Ryutov, D. D.
    Scotti, F.
    Kolemen, E.
    Bell, R. E.
    Diallo, A.
    Gerhardt, S.
    Kaita, R.
    Kaye, S.
    LeBlanc, B. P.
    Maingi, R.
    Menard, J. E.
    Podesta, M.
    Roquemore, A. L.
    Groebner, R. J.
    Hyatt, A. W.
    Leonard, A. W.
    Osborne, T. H.
    Petrie, T. W.
    Ahn, J. -W.
    Raman, R.
    Watkins, J. G.
    2015 IEEE 26TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2015,
  • [2] Optimization of the snowflake divertor for power and particle exhaust on NSTX-U
    Vail, P. J.
    Izacard, O.
    Kolemen, E.
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 516 - 523
  • [3] Design and simulation of the snowflake divertor control for NSTX-U
    Vail, P. J.
    Boyer, M. D.
    Welander, A. S.
    Kolemen, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (03)
  • [4] Divertor leg filaments in NSTX-U
    Scotti, Filippo
    Zweben, Stewart
    Soukhanovskii, Vlad
    Baver, Derek
    Myra, James
    NUCLEAR FUSION, 2018, 58 (12)
  • [5] Modeling divertor concepts for spherical tokamaks NSTX-U and ST-FNSF
    Meier, E. T.
    Gerhardt, S.
    Menard, J. E.
    Rognlien, T. D.
    Soukhanovskii, V. A.
    NUCLEAR FUSION, 2015, 55 (08)
  • [6] In search of X-point radiator regime features in NSTX and DIII-D discharges with the snowflake divertor
    Soukhanovskii, V. A.
    Allen, S. L.
    Fenstermacher, M. E.
    Lasnier, C. J.
    McLeana, A. G.
    Scotti, F.
    Kolemen, E.
    Diallo, A.
    Gerhardt, S.
    Kaye, S.
    LeBlanc, B. P.
    Maingi, R.
    Menard, J. E.
    Raman, R.
    Hyatt, A. W.
    Leonard, A. W.
    Osborne, T. H.
    NUCLEAR MATERIALS AND ENERGY, 2024, 41
  • [7] Initial development of the DIII-D snowflake divertor control
    Kolemen, E.
    Vail, P. J.
    Makowski, M. A.
    Allen, S. L.
    Bray, B. D.
    Fenstermacher, M. E.
    Humphreys, D. A.
    Hyatt, A. W.
    Lasnier, C. J.
    Leonard, A. W.
    McLean, A. G.
    Maingi, R.
    Nazikian, R.
    Petrie, T. W.
    Soukhanovskii, V. A.
    Unterberg, E. A.
    NUCLEAR FUSION, 2018, 58 (06)
  • [8] A study of X-divertor in NSTX-U with SOLPS simulations
    Chen, Zhong-Ping
    Kotschenreuther, Mike
    Mahajan, Swadesh
    Gerhardt, Stefan
    NUCLEAR FUSION, 2018, 58 (03)
  • [9] A snowflake divertor: a possible solution to the power exhaust problem for tokamaks
    Ryutov, D. D.
    Cohen, R. H.
    Rognlien, T. D.
    Umansky, M. V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
  • [10] Diagnostic options for radiative divertor feedback control on NSTX-U
    Soukhanovskii, V. A.
    Gerhardt, S. P.
    Kaita, R.
    McLean, A. G.
    Raman, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):