Cost-sensitive Hybrid Neural Networks for Heterogeneous and Imbalanced Data

被引:0
|
作者
Jiang, Xinxin [1 ]
Pan, Shirui [1 ]
Long, Guodong [1 ]
Chang, Jiang [2 ]
Jiang, Jing [1 ]
Zhang, Chengqi [1 ]
机构
[1] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
[2] Union Life Insurance Co, Comm Management, Beijing, Peoples R China
关键词
hybrid neural network; heterogeneous; imbalanced data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing accumulated data has recently attracted huge attention for its ability to generate values by identifying useful information and providing an edge in global business competition. However, heterogeneous data and imbalanced class distribution present two major challenges to machine learning with real-world business data. Traditional machine learning algorithms can typically only be applied to standard data sets, which are normally homogeneous and balanced. These algorithms narrow complex data into a homogeneous, a balanced data space an inefficient process that requires a significant amount of pre-processing. In this paper, we focus on an efficient solution to the challenges with heterogeneous and imbalanced data sets that does not require pre-processing. Our approach comprises a novel, unified, end-to-end cost-sensitive hybrid neural network that learns real-world heterogeneous data via a parallel network architecture. A specifically-designed cost-sensitive matrix then automatically generates a robust model for learning minority classifications. And the parameters of both the cost-sensitive matrix and the hybrid neural network are alternately but jointly optimized during training. The results of comparative experiments on six real-world data sets reflecting actual business cases, including insurance fraud detection and mobile customer demographics, indicate that the proposed approach demonstrates superior performance over baseline procedures.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cost-sensitive convolutional neural networks for imbalanced time series classification
    Geng, Yue
    Luo, Xinyu
    [J]. INTELLIGENT DATA ANALYSIS, 2019, 23 (02) : 357 - 370
  • [2] Cost-Sensitive Learning for Anomaly Detection in Imbalanced ECG Data Using Convolutional Neural Networks
    Zubair, Muhammad
    Yoon, Changwoo
    [J]. SENSORS, 2022, 22 (11)
  • [3] Cost-sensitive learning for imbalanced data streams
    Loezer, Lucas
    Enembreck, Fabricio
    Barddal, Jean Paul
    Britto Jr, Alceu de Souza
    [J]. PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 498 - 504
  • [4] Cost-Sensitive Learning Methods for Imbalanced Data
    Nguyen Thai-Nghe
    Gantner, Zeno
    Schmidt-Thieme, Lars
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [5] Cost-sensitive boosting for classification of imbalanced data
    Sun, Yamnin
    Kamel, Mohamed S.
    Wong, Andrew K. C.
    Wang, Yang
    [J]. PATTERN RECOGNITION, 2007, 40 (12) : 3358 - 3378
  • [6] Hybrid neural network with cost-sensitive support vector machine for class-imbalanced multimodal data
    Kim, Kyung Hye
    Sohn, So Young
    [J]. NEURAL NETWORKS, 2020, 130 : 176 - 184
  • [7] A Composite Cost-Sensitive Neural Network for Imbalanced Classification
    Chen, Lei
    Zhu, Yuan
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7264 - 7268
  • [8] COST-SENSITIVE SPFCNN MINER FOR CLASSIFICATION OF IMBALANCED DATA
    Zhao, Linchang
    Shang, Zhaowei
    Zhao, Ling
    Wei, Yu
    Tang, Yuan Yan
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 51 - 57
  • [9] Cost-sensitive learning for imbalanced medical data: a review
    Araf, Imane
    Idri, Ali
    Chairi, Ikram
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [10] On the Role of Cost-Sensitive Learning in Imbalanced Data Oversampling
    Krawczyk, Bartosz
    Wozniak, Michal
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 180 - 191