Anderson transition on the Bethe lattice: an approach with real energies

被引:39
|
作者
Parisi, Giorgio [1 ,2 ,3 ]
Pascazio, Saverio [4 ,5 ,6 ,7 ]
Pietracaprina, Francesca [1 ,8 ]
Ros, Valentina [9 ]
Scardicchio, Antonello [10 ,11 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] CNR, INFM, Ctr Stat Mech & Complex SMC, I-00185 Rome, Italy
[3] INFN, Sez Roma, I-00185 Rome, Italy
[4] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[5] Univ Bari, MECENAS, I-70126 Bari, Italy
[6] INFN, Sez Bari, I-70126 Bari, Italy
[7] CNR, INO, Ist Nazl Ottica, I-50125 Florence, Italy
[8] Univ Toulouse, CNRS, UPS, Lab Phys Theor,IRSAMC, Toulouse, France
[9] Univ Paris Diderot, Sorbonne Univ, Univ PSL,ENS,CNRS, Lab Phys,Ecole Normale Super,Sorbonne Paris Cite, Paris, France
[10] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[11] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
基金
欧洲研究理事会;
关键词
Anderson model; Bethe lattice; localization transition; MANY-BODY LOCALIZATION; MODEL; SYSTEMS; PHASE;
D O I
10.1088/1751-8121/ab56e8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Anderson model on the Bethe lattice by working directly with propagators at real energies E. We introduce a novel criterion for the localization-delocalization transition based on the stability of the population of the propagators, and show that it is consistent with the one obtained through the study of the imaginary part of the self-energy. We present an accurate numerical estimate of the transition point, as well as a concise proof of the asymptotic formula for the critical disorder on lattices of large connectivity, as given in Anderson (1958 Phys. Rev. 109 1492-505). We discuss how the forward approximation used in analytic treatments of localization problems fits into this scenario and how one can interpolate between it and the correct asymptotic analysis.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ANDERSON TRANSITION ON A BETHE LATTICE (SYMPLECTIC AND ORTHOGONAL ENSEMBLES)
    EFETOV, KB
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 93 (03): : 1125 - 1139
  • [2] Extended states in the Anderson model on the Bethe lattice
    Klein, A
    ADVANCES IN MATHEMATICS, 1998, 133 (01) : 163 - 184
  • [3] Localized phase of the Anderson model on the Bethe lattice
    Rizzo, Tommaso
    Tarzia, Marco
    PHYSICAL REVIEW B, 2024, 110 (18)
  • [4] Corrections to the Bethe lattice solution of Anderson localization
    Baroni, Matilde
    Lorenzana, Giulia Garcia
    Rizzo, Tommaso
    Tarzia, Marco
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [5] LOCALIZATION TRANSITION ON THE BETHE LATTICE
    ZIRNBAUER, MR
    PHYSICAL REVIEW B, 1986, 34 (09): : 6394 - 6408
  • [6] THE LOCALIZATION TRANSITION ON THE BETHE LATTICE
    KUNZ, H
    SOUILLARD, B
    JOURNAL DE PHYSIQUE LETTRES, 1983, 44 (11): : L411 - L414
  • [7] Critical behavior of the Anderson model on the Bethe lattice via a large-deviation approach
    Biroli, Giulio
    Hartmann, Alexander K.
    Tarzia, Marco
    PHYSICAL REVIEW B, 2022, 105 (09)
  • [8] ABSOLUTELY CONTINUOUS SPECTRUM IN THE ANDERSON MODEL ON THE BETHE LATTICE
    Klein, Abel
    MATHEMATICAL RESEARCH LETTERS, 1994, 1 (04) : 399 - 407
  • [9] SURPRISES IN THE PHASE DIAGRAM OF THE ANDERSON MODEL ON THE BETHE LATTICE
    Warzel, S.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 239 - 253
  • [10] Anderson Localization on the Bethe Lattice: Nonergodicity of Extended States
    De Luca, A.
    Altshuler, B. L.
    Kravtsov, V. E.
    Scardicchio, A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (04)