Statistical hyperbolicity in groups

被引:10
|
作者
Duchin, Moon [1 ]
Lelievre, Samuel
Mooney, Christopher
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2012年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
3-MANIFOLD GROUPS; CONVEX GROUPS; DIVERGENCE; SPACES;
D O I
10.2140/agt.2012.12.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a geometric statistic called the sprawl of a group with respect to a generating set, based on the average distance in the word metric between pairs of words of equal length. The sprawl quantifies a certain obstruction to hyperbolicity. Group presentations with maximum sprawl (ie without this obstruction) are called statistically hyperbolic. We first relate sprawl to curvature and show that nonelementary hyperbolic groups are statistically hyperbolic, then give some results for products and for certain solvable groups. In free abelian groups, the word metrics are asymptotic to norms induced by convex polytopes, causing several kinds of group invariants to reduce to problems in convex geometry. We present some calculations and conjectures concerning the values taken by the sprawl statistic for the group Z(d) as the generators vary, by studying the space R-d with various norms.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Statistical hyperbolicity of relatively hyperbolic groups
    Osborne, Jeremy
    Yang, Wen-Yuan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (04): : 2143 - 2158
  • [2] Statistical Hyperbolicity for Harmonic Measure
    Azemar, Aitor
    Gadre, Vaibhav
    Jeffreys, Luke
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (08) : 6289 - 6309
  • [3] Relative hyperbolicity and Artin groups
    Ruth Charney
    John Crisp
    Geometriae Dedicata, 2007, 129 : 1 - 13
  • [4] Statistical Hyperbolicity in Teichmuller Space
    Dowdall, Spencer
    Duchin, Moon
    Masur, Howard
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (03) : 748 - 795
  • [5] Relative Hyperbolicity and Artin Groups
    Ilya Kapovich
    Paul Schupp
    Geometriae Dedicata, 2004, 107 : 153 - 167
  • [6] Relative hyperbolicity and Artin groups
    Charney, Ruth
    Crisp, John
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 1 - 13
  • [7] On hierarchical hyperbolicity of cubical groups
    Hagen, Mark F.
    Susse, Tim
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 45 - 89
  • [8] Relative hyperbolicity and Artin groups
    Kapovich, I
    Schupp, P
    GEOMETRIAE DEDICATA, 2004, 107 (01) : 153 - 167
  • [9] On hierarchical hyperbolicity of cubical groups
    Mark F. Hagen
    Tim Susse
    Israel Journal of Mathematics, 2020, 236 : 45 - 89
  • [10] Statistical Hyperbolicity in Teichmüller Space
    Spencer Dowdall
    Moon Duchin
    Howard Masur
    Geometric and Functional Analysis, 2014, 24 : 748 - 795