Error bounds for the large time step Glimm scheme applied to scalar conservation laws

被引:0
|
作者
Huang, JY [1 ]
Wang, JH
Warnecke, G
机构
[1] Beijing Univ Chem Technol, Beijing 100029, Peoples R China
[2] Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
[3] Univ Magdeburg, Inst Anal & Numer, D-39016 Magdeburg, Germany
关键词
D O I
10.1007/s002110100335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive an L-1 error bound for the large time step. i.e. large Courant number, version of the Glimm scheme when used for the approximation of solutions to a genuinely nonlinear, i.e. convex, scalar conservation law for a generic class of piecewise constant data. We show that the error is bounded by O(Deltax(1/2)\ log Deltax\) for Courant numbers up to 1. The order of the error is the same as that given by Hoff and Smoller [5] in 1985 for the Glimm scheme under the restriction of Courant numbers up to 1/2.
引用
收藏
页码:13 / 34
页数:22
相关论文
共 50 条