Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing

被引:29
|
作者
Sha, Jingjie [1 ,2 ]
Hasan, Tawfique [3 ]
Milana, Silvia [3 ]
Bertulli, Cristina [2 ]
Bell, Nicholas A. W. [2 ]
Privitera, Giulia [3 ]
Ni, Zhonghua [1 ]
Chen, Yunfei [1 ]
Bonaccorso, Francesco [3 ,4 ]
Ferrari, Andrea C. [3 ]
Keyser, Ulrich F. [2 ]
Huang, Yan Yan S. [5 ,6 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
[4] CNR, IPCF, I-98158 Messina, Italy
[5] Univ Cambridge, Dept Chem Engn, Cambridge CB2 1QT, England
[6] Univ Cambridge, Inst Biotechnol, Cambridge CB2 1QT, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
nanotubes; DNA; proteins; nanopore; hybrids; sensors; WALLED CARBON NANOTUBES; BOVINE SERUM-ALBUMIN; EXCITON ENERGY-TRANSFER; SINGLE-WALL; RAMAN-SPECTROSCOPY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; STABILIZATION; TRANSLOCATION; FLUORESCENCE;
D O I
10.1021/nn403323k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers.
引用
收藏
页码:8857 / 8869
页数:13
相关论文
共 50 条
  • [1] Electrochemical Resistive-Pulse Sensing
    Pan, Rongrong
    Hu, Keke
    Jiang, Dechen
    Samurai, Uri
    Mirkin, Michael V.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (50) : 19555 - 19559
  • [2] Resistive-pulse Sensing of DNA with a Polymeric Nanopore Sensor and Characterization of DNA Translocation
    Kececi, Kaan
    Kaya, Dila
    Martin, Charles R.
    [J]. CHEMNANOMAT, 2022, 8 (02):
  • [3] Cell Screening Using Resistive-Pulse Sensing
    Balakrishnan, Karthik
    Sohn, Lydia L.
    [J]. LABORATORY METHODS IN CELL BIOLOGY: BIOCHEMISTRY AND CELL CULTURE, 2012, 112 : 369 - 387
  • [4] Resistive-pulse sensing - From microbes to molecules
    Bayley, H
    Martin, CR
    [J]. CHEMICAL REVIEWS, 2000, 100 (07) : 2575 - 2594
  • [5] Electrochemical Resistive-Pulse Sensing of Extracellular Vesicles
    Jia, Rui
    Rotenberg, Susan A.
    V. Mirkin, Michael
    [J]. ANALYTICAL CHEMISTRY, 2022, 94 (37) : 12614 - 12620
  • [6] Characterizations of nanospheres and nanorods using resistive-pulse sensing
    Che-Yen Lee
    Chihchen Chen
    [J]. Microsystem Technologies, 2017, 23 : 299 - 304
  • [7] Resistive-pulse and rectification sensing with glass and carbon nanopipettes
    Wang, Yixian
    Wang, Dengchao
    Mirkin, Michael V.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [8] Resistive-Pulse Sensing Inside Single Living Cells
    Pan, Rongrong
    Hu, Keke
    Jia, Rui
    Rotenberg, Susan A.
    Jiang, Dechen
    Mirkin, Michael, V
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) : 5778 - 5784
  • [9] Characterizations of nanospheres and nanorods using resistive-pulse sensing
    Lee, Che-Yen
    Chen, Chihchen
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (02): : 299 - 304
  • [10] Resistive-pulse DNA detection with a conical nanopore sensor
    Harrell, C. Chad
    Choi, Youngseon
    Horne, Lloyd P.
    Baker, Lane A.
    Siwy, Zuzanna S.
    Martin, Charles R.
    [J]. LANGMUIR, 2006, 22 (25) : 10837 - 10843