Three alternative versions of the theory for a Timoshenko-Ehrenfest beam on a Winkler-Pasternak foundation

被引:5
|
作者
Tonzani, Giulio Maria [1 ]
Elishakoff, Isaac [2 ]
机构
[1] Univ Bologna, Scuola Ingn & Archittettura, Dipartimento Ingn Civile Chim Ambientale Mat, Bologna, Italy
[2] Florida Atlantic Univ, Dept Ocean & Mech Engn, Boca Raton, FL 33431 USA
关键词
Timoshenko-Ehrenfest beam theory; Winkler foundation; Pasternak foundation; shear deformation; rotary inertia; FREE-VIBRATION ANALYSIS; TRANSVERSE VIBRATIONS; EQUATION; COLUMNS; UNIFORM;
D O I
10.1177/1081286520947775
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper analyzes the free vibration frequencies of a beam on a Winkler-Pasternak foundation via the original Timoshenko-Ehrenfest theory, a truncated version of the Timoshenko-Ehrenfest equation, and a new model based on slope inertia. We give a detailed comparison between the three models in the context of six different sets of boundary conditions. In particular, we analyze the most common combinations of boundary conditions deriving from three typical end constraints, namely the simply supported end, clamped end, and free end. An interesting intermingling phenomenon is presented for a simply-supported (S-S) beam together with proof of the 'non-existence' of zero frequencies for free-free (F-F) and simply supported-free (S-F) beams on a Winkler-Pasternak foundation.
引用
收藏
页码:299 / 324
页数:26
相关论文
共 50 条
  • [1] Contrasting three alternative versions of Timoshenko-Ehrenfest theory for beam on Winkler elastic foundation - simply supported beam
    Elishakoff, Isaac
    Tonzani, Giulio Maria
    Zaza, Nicolo
    Marzani, Alessandro
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (08): : 1334 - 1368
  • [2] Effect of boundary conditions in three alternative models of Timoshenko-Ehrenfest beams on Winkler elastic foundation
    Elishakoff, Isaac
    Tonzani, Giulio Maria
    Marzani, Alessandro
    [J]. ACTA MECHANICA, 2018, 229 (04) : 1649 - 1686
  • [3] Three alternative versions of Bresse-Timoshenko theory for beam on pure Pasternak foundation
    Elishakoff, Isaac
    Tonzani, Giulio Maria
    Marzani, Alessandro
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 149 : 402 - 412
  • [4] Further Insights Into the Timoshenko-Ehrenfest Beam Theory
    Banerjee, J. R.
    Kennedy, D.
    Elishakoff, I.
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [5] FURTHER INSIGHTS INTO THE TIMOSHENKO-EHRENFEST BEAM THEORY
    Banerjee, J. R.
    Kennedy, D.
    Elishakoff, I.
    [J]. PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 5, 2022,
  • [6] Variational Derivation of Truncated Timoshenko-Ehrenfest Beam Theory
    De Rosa, Maria Anna
    Lippiello, Maria
    Elishakoff, Isaac
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (03): : 996 - 1004
  • [7] Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler-Pasternak Elastic Foundation
    Calim, Faruk Firat
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2020, 44 (03) : 901 - 920
  • [8] Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation
    Robinson, Mouafo Teifouet Armand
    Adali, Sarp
    [J]. COMPOSITE STRUCTURES, 2018, 206 : 95 - 103
  • [9] Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation
    Deng, Hao
    Chen, KaiDong
    Cheng, Wei
    Zhao, ShouGen
    [J]. COMPOSITE STRUCTURES, 2017, 160 : 152 - 168
  • [10] Effect of boundary conditions in three alternative models of Timoshenko–Ehrenfest beams on Winkler elastic foundation
    Isaac Elishakoff
    Giulio Maria Tonzani
    Alessandro Marzani
    [J]. Acta Mechanica, 2018, 229 : 1649 - 1686