On warped product gradient Yamabe solitons

被引:14
|
作者
Tokura, W. [1 ]
Adriano, L. [1 ]
Pina, R. [1 ]
Barboza, M. [2 ]
机构
[1] Univ Fed Goias, IME 131, BR-74001970 Goiania, Go, Brazil
[2] Inst Fed Goiano, Rodovia Geraldo Silva Nascimento Km 2,5, BR-75790000 Urutai, Go, Brazil
关键词
Warped product; Gradient Yamabc solitons; Scalar curvature; Semi-Riemannian metric; Almost gradient Yamabe solitons; RICCI SOLITONS;
D O I
10.1016/j.jmaa.2018.12.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study gradient Yamaha solitons on top of warped product manifolds. First we prove triviality results in the case of a bounded warping function on a noncompact base and then, for compact base. In order to provide nontrivial examples, we consider the base conformal to a semi-Euclidean space, which is invariant under the action of a translation group, and then we characterize steady solitons. We use this method to give infinitely many explicit examples of complete steady gradient Yamabe solitons. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [1] Properties of Warped Product Gradient Yamabe Solitons
    Willian Tokura
    Marcelo Barboza
    Levi Adriano
    Romildo Pina
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [2] On Finslerian Warped Product Gradient Yamabe Solitons
    W. Tokura
    L. Adriano
    R. Pina
    M. Barboza
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 873 - 894
  • [3] Properties of Warped Product Gradient Yamabe Solitons
    Tokura, Willian
    Barboza, Marcelo
    Adriano, Levi
    Pina, Romildo
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [4] On Finslerian Warped Product Gradient Yamabe Solitons
    Tokura, W.
    Adriano, L.
    Pina, R.
    Barboza, M.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 873 - 894
  • [5] Gradient Yamabe Solitons on Multiply Warped Product Manifolds
    Karaca, Fatma
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 157 - 168
  • [6] ON A CLASSIFICATION OF WARPED PRODUCT MANIFOLDS WITH GRADIENT YAMABE SOLITONS
    Choi, Jin Hyuk
    Kim, Byung Hak
    Lee, Sang Deok
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 261 - 268
  • [7] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    [J]. FILOMAT, 2023, 37 (07) : 2199 - 2207
  • [8] Gradient almost Yamabe solitons immersed into a Riemannian warped product manifold
    Tokura, Willian
    Adriano, Levi
    Batista, Elismar
    Bezzera, Adriano
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (03)
  • [9] A Note on Warped Product Almost Quasi-Yamabe Solitons
    Blaga, Adara M.
    [J]. FILOMAT, 2019, 33 (07) : 2009 - 2016
  • [10] Conformal Ricci-Yamabe solitons on warped product manifolds
    Singh, Jay Prakash
    Sumlalsanga, Robert
    [J]. FILOMAT, 2024, 38 (11) : 3791 - 3802