MOOSE: Enabling massively parallel multiphysics simulation

被引:417
|
作者
Permann, Cody J. [1 ]
Gaston, Derek R. [1 ]
Andrs, David [1 ]
Carlsen, Robert W. [1 ]
Kong, Fande [1 ]
Lindsay, Alexander D. [1 ]
Miller, Jason M. [1 ]
Peterson, John W. [3 ]
Slaughter, Andrew E. [1 ]
Stogner, Roy H. [2 ]
Martineau, Richard C. [1 ]
机构
[1] Idaho Natl Lab, Computat Frameworks, Idaho Falls, ID 83415 USA
[2] Univ Texas Austin, Inst Computat & Engn Sci, Austin, TX 78712 USA
[3] Akselos Inc, 2101 West Blvd, Houston, TX 77042 USA
关键词
Framework; Finite-element; Parallel; Multiphysics; Multiscale; FRAMEWORK;
D O I
10.1016/j.softx.2020.100430
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Harnessing modern parallel computing resources to achieve complex multiphysics simulations is a daunting task. The Multiphysics Object Oriented Simulation Environment (MOOSE) aims to enable such development by providing simplified interfaces for specification of partial differential equations, boundary conditions, material properties, and all aspects of a simulation without the need to consider the parallel, adaptive, nonlinear, finite element solve that is handled internally. Through the use of interfaces and inheritance, each portion of a simulation becomes reusable and composable in a manner that allows disparate research groups to share code and create an ecosystem of growing capability that lowers the barrier for the creation of multiphysics simulation codes. Included within the framework is a unique capability for building multiscale, multiphysics simulations through simultaneous execution of multiple sub -applications with data transfers between the scales. Other capabilities include automatic differentiation, scaling to a large number of processors, hybrid parallelism, and mesh adaptivity. To date, MOOSE -based applications have been created in areas of science and engineering such as nuclear physics, geothermal science, magneto -hydrodynamics, seismic events, compressible and incompressible fluid flow, microstructure evolution, and advanced manufacturing processes. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] 2.0-MOOSE: Enabling massively parallel multiphysics simulation
    Lindsay, Alexander D.
    Gaston, Derek R.
    Permann, Cody J.
    Miller, Jason M.
    Andrs, David
    Slaughter, Andrew E.
    Kong, Fande
    Hansel, Joshua
    Carlsen, Robert W.
    Icenhour, Casey
    Harbour, Logan
    Giudicelli, Guillaume L.
    Stogner, Roy H.
    German, Peter
    Badger, Jacob
    Biswas, Sudipta
    Chapuis, Leora
    Green, Christopher
    Hales, Jason
    Hu, Tianchen
    Jiang, Wen
    Jung, Yeon Sang
    Matthews, Christopher
    Miao, Yinbin
    Novak, April
    Peterson, John W.
    Prince, Zachary M.
    Rovinelli, Andrea
    Schunert, Sebastian
    Schwen, Daniel
    Spencer, Benjamin W.
    Veeraraghavan, Swetha
    Recuero, Antonio
    Yushu, Dewen
    Wang, Yaqi
    Wilkins, Andy
    Wong, Christopher
    SOFTWAREX, 2022, 20
  • [2] 3.0-MOOSE: Enabling massively parallel multiphysics simulations
    Giudicelli, Guillaume
    Lindsay, Alexander
    Harbour, Logan
    Icenhour, Casey
    Li, Mengnan
    Hansel, Joshua E.
    German, Peter
    Behne, Patrick
    Marin, Oana
    Stogner, Roy H.
    Miller, Jason M.
    Schwen, Daniel
    Wang, Yaqi
    Munday, Lynn
    Schunert, Sebastian
    Spencer, Benjamin W.
    Yushu, Dewen
    Recuero, Antonio
    Prince, Zachary M.
    Nezdyur, Max
    Hu, Tianchen
    Miao, Yinbin
    Jung, Yeon Sang
    Matthews, Christopher
    Novak, April
    Langley, Brandon
    Truster, Timothy
    Nobre, Nuno
    Alger, Brian
    Andrs, David
    Kong, Fande
    Carlsen, Robert
    Slaughter, Andrew E.
    Peterson, John W.
    Gaston, Derek
    Permann, Cody
    SOFTWAREX, 2024, 26
  • [3] A Python']Python extension for the massively parallel multiphysics simulation framework WALBERLA
    Bauer, Martin
    Schornbaum, Florian
    Godenschwager, Christian
    Markl, Matthias
    Anderl, Daniela
    Koestler, Harald
    Ruede, Ulrich
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2016, 31 (06) : 529 - 542
  • [4] Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
    Dubey, Anshu
    Antypas, Katie
    Ganapathy, Murali K.
    Reid, Lynn B.
    Riley, Katherine
    Sheeler, Dan
    Siegel, Andrew
    Weide, Klaus
    PARALLEL COMPUTING, 2009, 35 (10-11) : 512 - 522
  • [5] 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
    Kononenko, Oleksiy
    Adolphsen, Chris
    Li, Zenghai
    Ng, Cho-Kuen
    Rivetta, Claudio
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (10):
  • [6] Managing complexity in massively parallel, adaptive, multiphysics applications
    Edwards, H. Carter
    ENGINEERING WITH COMPUTERS, 2006, 22 (3-4) : 135 - 155
  • [7] Managing complexity in massively parallel, adaptive, multiphysics applications
    H. Carter Edwards
    Engineering with Computers, 2006, 22 : 135 - 155
  • [8] Massively Parallel Logic Simulation with GPUs
    Zhu, Yuhao
    Wang, Bo
    Deng, Yangdong
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2011, 16 (03)
  • [9] Enabling massively parallel, ad hoc exploration of the design space for simulation models within a serverless environment
    Gibson, Andrew
    Rossetti, Manuel D.
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2024, 100 (08):
  • [10] A scalable multiphysics algorithm for massively parallel direct numerical simulations of electrophoretic motion
    Bartuschat, Dominik
    Ruede, Ulrich
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 27 : 147 - 167