EXISTENCE RESULTS AND APPLICATIONS FOR GENERAL VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS

被引:0
|
作者
Mezei, Ildiko-Ilona [1 ]
Saplacan, Lia [2 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Petru Rares High Sch, Beclean 425100, Romania
关键词
Motreanu-Panagiotopoulos type functional; critical points; variational-hemivariational inequalities; principle of symmetric criticality; SYMMETRIC CRITICALITY; PRINCIPLE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give an existence result for a class of variational-hemivariational inequality on unbounded domain using the mountain pass theorem and the principle of symmetric criticality for Motreanu-Panagiotopoulos type functionals. Next, we give two applications of the obtained result.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [2] Existence and comparison results for variational-hemivariational inequalities
    S Carl
    [J]. Journal of Inequalities and Applications, 2005
  • [3] Existence and comparison results for variational-hemivariational inequalities
    Carl, S.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (01) : 33 - 40
  • [4] Evolutionary variational-hemivariational inequalities: Existence and comparison results
    Carl, Siegfried
    Le, Vy K.
    Motreanu, Dumitru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 545 - 558
  • [5] Existence results for evolutionary inclusions and variational-hemivariational inequalities
    Gasinski, Leszek
    Migorski, Stanislaw
    Ochal, Anna
    [J]. APPLICABLE ANALYSIS, 2015, 94 (08) : 1670 - 1694
  • [6] Existence theorems of the variational-hemivariational inequalities
    Guo-ji Tang
    Nan-jing Huang
    [J]. Journal of Global Optimization, 2013, 56 : 605 - 622
  • [7] Existence theorems of the variational-hemivariational inequalities
    Tang, Guo-ji
    Huang, Nan-jing
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 605 - 622
  • [8] Existence and comparison principles for general quasilinear variational-hemivariational inequalities
    Carl, S
    Le, VK
    Motreanu, D
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 65 - 83
  • [9] On regularity results for variational-hemivariational inequalities
    Naniewicz, Z
    Panagiotopoulos, PD
    [J]. DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 301 - 322
  • [10] General Comparison Principle for Variational-Hemivariational Inequalities
    Siegfried Carl
    Patrick Winkert
    [J]. Journal of Inequalities and Applications, 2009