On Generalized Jordan Triple (α, β)*-Derivations and Related Mappings

被引:7
|
作者
Ali, Shakir [1 ]
Fosner, Ajda [2 ]
Fosner, Maja [3 ]
Khan, Mohammad Salahuddin [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Univ Primorska, Fac Management, Koper 6104, Slovenia
[3] Univ Maribor, Fac Logist, Celje 3000, Slovenia
关键词
Semiprime (*)-ring; H*-algebra; Jordan triple (a; beta)*-derivation; generalized Jordan triple (a; Jordan triple left alpha*-centralizer; PRIME-RINGS; QUADRATIC FUNCTIONALS; SEMIPRIME RINGS; DERIVATIONS;
D O I
10.1007/s00009-013-0277-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a 2-torsion free semiprime *-ring and let alpha, beta be surjective endomorphisms of R. The aim of the paper is to show that every generalized Jordan triple (alpha, beta)*-derivation on R is a generalized Jordan (alpha, beta)*-derivation. This result makes it possible to prove that every generalized Jordan triple (alpha, beta)*-derivation on a semisimple H*- algebra is a generalized Jordan (alpha, beta)*-derivation. Finally, we prove that every Jordan triple left alpha*-centralizer on a 2-torsion free semiprime ring is a Jordan left alpha*-centralizer.
引用
收藏
页码:1657 / 1668
页数:12
相关论文
共 50 条