Substrate specificity and structure-function analysis of the 3′-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D

被引:27
|
作者
Zhu, Hui [1 ]
Shuman, Stewart [1 ]
机构
[1] Sloan Kettering Inst, Mol Biol Program, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M600055200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA ligase D (LigD) performs end remodeling and end sealing reactions during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at the 3' end of the primer strand of a primer-template. The phosphodiesterase cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus. The phosphomonoesterase converts a terminal ribonucleoside 3'-PO4 or deoxyribonucleoside 3'-PO4 of a primer-template to a 3'-OH. Here we report that the phosphodiesterase and phosphomonoesterase activities are both dependent on the presence and length of the 5' single-strand tail of the primer-template substrate. Although the phosphodiesterase activity is strictly dependent on the 2'-OH of the penultimate ribose, it is indifferent to a 2'-OH versus a 2'-H on the terminal nucleoside. Incision at the ribonucleotide linkage is suppressed when the 2'-OH is moved by 1 nucleotide in the 5' direction, suggesting that LigD is an exoribonuclease that cleaves the 3'-terminal phosphodiester. We report the effects of conservative amino acid substitutions at residues: (i) His(42), His(48), Asp(50), Arg(52), His(84), and Tyr(88), which are essential for both the ribonuclease and 3'-phosphatase activities; (ii) Arg(14), Asp(15), Glu(21), and Glu(82), which are critical for 3'-phosphatase activity but not 3'-ribonucleoside removal; and (iii) at Lys(66) and Arg(76), which participate selectively in the 3'-ribonuclease reaction. The results suggest roles for individual functional groups in metal binding and/or phosphoesterase chemistry.
引用
收藏
页码:13873 / 13881
页数:9
相关论文
共 50 条
  • [21] Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D
    Hartshorn, Kevan L.
    White, Mitchell R.
    Rynkiewicz, Michael
    Sorensen, Grith
    Holmskov, Uffe
    Head, James
    Crouch, Erika C.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2010, 299 (03) : L384 - L392
  • [22] Assignment of enzyme substrate specificity by principal component analysis of aligned protein sequences:: An experimental test using DNA glycosylase homologs
    Gogos, A
    Jantz, D
    Sentürker, S
    Richardson, D
    Dizdaroglu, M
    Clarke, ND
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2000, 40 (01) : 98 - 105
  • [23] Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa
    Bleves, S
    Gérard-Vincent, M
    Lazdunski, A
    Filloux, A
    JOURNAL OF BACTERIOLOGY, 1999, 181 (13) : 4012 - 4019
  • [24] DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis
    McKie, Shannon J.
    Neuman, Keir C.
    Maxwell, Anthony
    BIOESSAYS, 2021, 43 (04)
  • [25] Structure-Function Analysis of the φX174 DNA-Piloting Protein Using Length-Altering Mutations
    Roznowski, Aaron P.
    Fane, Bentley A.
    JOURNAL OF VIROLOGY, 2016, 90 (17) : 7956 - 7966
  • [26] Structure-function studies of p38 mitogen-activated protein kinase - Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection
    Jiang, Y
    Li, ZJ
    Schwarz, EM
    Lin, AN
    Guan, KL
    Ulevitch, RJ
    Han, JH
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (17) : 11096 - 11102
  • [27] Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships
    Brettar, Ingrid
    Christen, Richard
    Hoefle, Manfred G.
    ISME JOURNAL, 2012, 6 (01): : 195 - 212
  • [28] Structure-function analysis of the C3 binding region of Staphylococcus aureus immune subversion protein Sbi
    Upadhyay, Abhishek
    Burman, Julia D.
    Clark, Elizabeth A.
    Leung, Elisa
    Isenman, David E.
    van den Elsen, Jean M. H.
    Bagby, Stefan
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (32) : 22113 - 22120
  • [29] Student Understanding of DNA Structure-Function Relationships Improves from Using 3D Learning Modules with Dynamic 3D Printed Models
    Howell, Michelle E.
    Booth, Christine S.
    Sikich, Sharmin M.
    Helikar, Tomas
    Roston, Rebecca L.
    Couch, Brian A.
    van Dijk, Karin
    BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, 2019, 47 (03) : 303 - 317
  • [30] Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation
    Quevillon-Cheruel, Sophie
    Campo, Nathalie
    Mirouze, Nicolas
    Mortier-Barriere, Isabelle
    Brooks, Mark A.
    Boudes, Marion
    Durand, Dominique
    Soulet, Anne-Lise
    Lisboa, Johnny
    Noirot, Philippe
    Martin, Bernard
    van Tilbeurgh, Herman
    Noirot-Gros, Marie-Francoise
    Claverys, Jean-Pierre
    Polard, Patrice
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (37) : E2466 - E2475