An extension to the Frenet-Serret and Bishop invariant extended Kalman filters for tracking accelerating targets

被引:0
|
作者
Gibbs, Joe [1 ]
Anderson, David [1 ]
MacDonald, Matt [2 ]
Russell, John [2 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow, Lanark, Scotland
[2] Leonardo UK, Sightline Control Syst Grp, Edinburgh, Midlothian, Scotland
关键词
Frenet-Serret; Bishop frame; Kalman filter; Lie groups;
D O I
10.1109/SSPD54131.2022.9896179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an extension to the original Frenet-Serret and Bishop frame target models used in the invariant extended Kalman filter (IEKF) to account for tangential accelerations for highly-manoeuvrable targets. State error propagation matrices are derived for both IEKFs and used to build the accelerating Frenet-Serret (FSa-LIEKF) and Bishop (Ba-LIEKF) algorithms. The filters are compared to the original Frenet-Serret and Bishop algorithms in a tracking scenario featuring a target performing a series of complex manoeuvres. The accelerating forms of the LIEKF are shown to improve velocity estimation during non-constant velocity trajectory segments at the expense of increased noise during simpler manoeuvres.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 36 条
  • [1] Characterisation of Frenet-Serret and Bishop motions with applications to needle steering
    Selig, J. M.
    ROBOTICA, 2013, 31 : 981 - 992
  • [2] Tracking the Frenet-Serret frame associated to a highly maneuvering target in 3D
    Pilte, Marion
    Bonnabel, Silvere
    Barbaresco, Frederic
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [3] Limits in tracking with extended Kalman filters
    Schlosser, MS
    Kroschel, K
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2004, 40 (04) : 1351 - 1359
  • [4] Adaptive Kalman Filter for Tracking of Fast Accelerating Targets
    Hudec, Premysl
    Panek, Petr
    2017 EUROPEAN RADAR CONFERENCE (EURAD), 2017, : 267 - 270
  • [5] Extended Kalman filters for close-range navigation to noncooperative targets
    Gaias, Gabriella
    Lovera, Marco
    ADVANCES IN SPACE RESEARCH, 2024, 73 (11) : 5521 - 5544
  • [6] Multisensor Tracking of Marine Targets - Decentralized Fusion of Kalman and Neural Filters
    Stateczny, Andrzej
    Kazimierski, Witold
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, 57 (01) : 65 - 70
  • [7] Invariant Extended Kalman Filter Applied to Tracking for Air Traffic Control
    Marion, Pilte
    Sami, Jouaber
    Silvere, Bonnabel
    Frederic, Barbaresco
    Marc, Fragu
    Nicolas, Honore
    2019 INTERNATIONAL RADAR CONFERENCE (RADAR2019), 2019, : 697 - 702
  • [8] PARALLEL IMPLEMENTATION OF RADAR TRACKING EXTENDED KALMAN FILTERS ON TRANSPUTER NETWORKS
    RAO, KD
    DHAWAS, JA
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (02) : 857 - 862
  • [9] Extended Target Tracking using an IMM Based Nonlinear Kalman Filters
    Zhou, Yucheng
    Xu, Jiahe
    Jing, Yuanwei
    Dimirovski, Georgi M.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6876 - 6881
  • [10] Fully invariant multiple object recognition and tracking using MACH and Kalman filters
    Bone, Peter
    Young, Rupert
    Chatwin, Chris
    OPTICAL PATTERN RECOGNITION XVIII, 2007, 6574