Slurry-Fabricable Li+-Conductive Polymeric Binders for Practical All-Solid-State Lithium-Ion Batteries Enabled by Solvate Ionic Liquids

被引:171
|
作者
Oh, Doe Yang [1 ,2 ]
Nam, Young Jin [1 ,2 ]
Park, Kern Ho [1 ]
Jung, Sung Hoo [1 ,2 ]
Kim, Kyu Tae [1 ]
Ha, A. Reum [1 ]
Jung, Yoon Seok [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
binders; composite electrodes; solid electrolytes; solid-state batteries; super-concentrated electrolytes; SUPERCONCENTRATED ELECTROLYTES; SUPERIONIC CONDUCTOR; PERFORMANCE; ELECTRODES; STABILITY; CHALLENGES; TRANSPORT; MECHANISM; INSIGHTS; LI7P3S11;
D O I
10.1002/aenm.201802927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For mass production of all-solid-state lithium-ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet-slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+-ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet-type ASLB electrodes made of Li+-conductive polymeric binders is reported. The use of intermediatepolarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate-ionic-liquid-based polymeric binders (NBR-Li(G3) TFSI, NBR: nitrile-butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl) imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR-Li(G3) TFSI show high capacities of 174 and 160 mA h g(-1) at 30 degrees C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g(-1)). Moreover, high areal capacity of 7.4 mA h cm(-2) is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm(-2). The facilitated Li+-ionic contacts at interfaces paved by NBR-Li(G3) TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stimulating the electrostatic interactions in composite cathodes using a slurry-fabricable polar binder for practical all-solid-state batteries
    Jeong, Woo-Hyun
    Kim, Hyerim
    Kansara, Shivam
    Lee, Seungwon
    Agostini, Marco
    Kim, Kyungsu
    Hwang, Jang-Yeon
    Jung, Yun-Chae
    ENERGY STORAGE MATERIALS, 2024, 73
  • [2] Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries
    Oh, Dae Yang
    Nam, Young Jin
    Park, Kern Ho
    Jung, Sung Hoo
    Cho, Sung-Ju
    Kim, Yun Kyeong
    Lee, Young-Gi
    Lee, Sang-Young
    Jung, Yoon Seok
    ADVANCED ENERGY MATERIALS, 2015, 5 (22)
  • [3] Assessment of all-solid-state lithium-ion batteries
    Braun, P.
    Uhlmann, C.
    Weiss, M.
    Weber, A.
    Ivers-Tiffee, E.
    JOURNAL OF POWER SOURCES, 2018, 393 : 119 - 127
  • [4] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [5] Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries
    Wang, Ailian
    Liu, Xu
    Wang, Shi
    Chen, Jie
    Xu, Hao
    Xing, Qian
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2018, 276 : 184 - 193
  • [6] Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries
    Jeong, Kihun
    Park, Sodam
    Lee, Sang-Young
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (05) : 1917 - 1935
  • [7] Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries
    Zhang, Cheng
    Lin, Yue
    Zhu, Yuewu
    Zhang, Zhi
    Liu, Jin
    RSC ADVANCES, 2017, 7 (31): : 19231 - 19236
  • [8] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [9] Operando Characterization Techniques for All-Solid-State Lithium-Ion Batteries
    Strauss, Florian
    Kitsche, David
    Ma, Yuan
    Teo, Jun Hao
    Goonetilleke, Damian
    Janek, Juergen
    Bianchini, Matteo
    Brezesinski, Torsten
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [10] Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability
    Oh, Dae Yang
    Kim, Kyu Tae
    Jung, Sung Hoo
    Kim, Dong Hyeon
    Jun, Seunggoo
    Jeoung, Sungeun
    Moon, Hoi Ri
    Jung, Yoon Seok
    MATERIALS TODAY, 2022, 53 : 7 - 15