A modified nonlinear Galerkin method for the viscoelastic fluid motion equations

被引:41
|
作者
Cannon, JR
Ewing, RE
He, YN
Lin, YP [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[4] Xian Jiao Tong Univ, Res Ctr Appl Math, Xian 710049, Peoples R China
关键词
viscoelastic fluid motion equations; modified nonlinear Galerkin method; Galerkin method; convergence rate;
D O I
10.1016/S0020-7225(98)00142-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we first provide a priori estimates of the solution for the nonstationary two-dimensional viscoelastic fluid motion equations with periodic boundary condition. We then present an modified nonlinear Galerkin method for solving such equations. By comparing the convergence rates of the proposed method with the standard Galerkin method, we conclude that the modified nonlinear Galerkin method is better than the standard Galerkin method because the former can save a large amount of computational work and maintain the convergence rate of the latter. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1643 / 1662
页数:20
相关论文
共 50 条
  • [1] Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow
    Bajpai, Saumya
    Nataraj, Neela
    Pani, Amiya K.
    Damazio, Pedro
    Yuan, Jin Yun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 857 - 883
  • [2] A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin-Voigt fluids
    Pani, Amiya K.
    Pany, Ambit K.
    Damazio, Pedro
    Yuan, Jin Yun
    APPLICABLE ANALYSIS, 2014, 93 (08) : 1587 - 1610
  • [3] MOTION OF NONLINEAR VISCOELASTIC FLUID
    AGRANOVICH, JJ
    SOBOLEVSKII, PE
    DOKLADY AKADEMII NAUK SSSR, 1990, 314 (03): : 521 - 525
  • [4] Equations of nonlinear motion of viscoelastic beams
    Mahmoodi, S. Nima
    Khadem, Siamak E.
    Esmailzadeh, Ebrahim
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 231 - 235
  • [5] A finite element penalty method for the linearized viscoelastic Oldroyd fluid motion equations
    Wang, Kun
    Shang, Yueqiang
    Wei, Hongbo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 1814 - 1827
  • [6] A Modified Weak Galerkin Method for Stokes Equations
    Zhang, Li
    Feng, Minfu
    Zhang, Jian
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 890 - 910
  • [7] NONLINEAR GALERKIN METHOD FOR STEADYNONLINEAR DIFFERENTIAL EQUATIONS
    HE Yinnian
    LI Kaitai(Research Centre for Applied Mathematics
    Systems Science and Mathematical Sciences, 1997, (04) : 320 - 328
  • [8] ASYMPTOTIC ANALYSIS OF THE EQUATIONS OF MOTION FOR VISCOELASTIC OLDROYD FLUID
    Wang, Kun
    Lin, Yanping
    He, Yinnian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) : 657 - 677
  • [9] Weak Galerkin finite element method for viscoelastic wave equations
    Wang, Xiuping
    Gao, Fuzheng
    Sun, Zhengjia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [10] Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system
    San Martín, J
    Scheid, JF
    Takahashi, T
    Tucsnak, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) : 1536 - 1571