Hybrid Control Trajectory Optimization under Uncertainty

被引:0
|
作者
Pajarinen, Joni [1 ]
Kyrki, Ville [2 ]
Koval, Michael [3 ]
Srinivasa, Siddhartha [3 ]
Peters, Jan [4 ,5 ]
Neumann, Gerhard [6 ]
机构
[1] Tech Univ Darmstadt, Computat Learning Autonomous Syst CLAS & Intellig, Darmstadt, Germany
[2] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
[4] Tech Univ Darmstadt, IAS Lab, Darmstadt, Germany
[5] Max Planck Inst Intelligent Syst, Tubingen, Germany
[6] Univ Lincoln, Lincoln Ctr Autonomous Syst, Lincoln, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SYSTEMS; FRAMEWORK; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory optimization is a fundamental problem in robotics. While optimization of continuous control trajectories is well developed, many applications require both discrete and continuous, i.e. hybrid controls. Finding an optimal sequence of hybrid controls is challenging due to the exponential explosion of discrete control combinations. Our method, based on Differential Dynamic Programming (DDP), circumvents this problem by incorporating discrete actions inside DDP: we first optimize continuous mixtures of discrete actions, and, subsequently force the mixtures into fully discrete actions. Moreover, we show how our approach can be extended to partially observable Markov decision processes (POMDPs) for trajectory planning under uncertainty. We validate the approach in a car driving problem where the robot has to switch discrete gears and in a box pushing application where the robot can switch the side of the box to push. The pose and the friction parameters of the pushed box are initially unknown and only indirectly observable.
引用
收藏
页码:5694 / 5701
页数:8
相关论文
共 50 条
  • [1] TRAJECTORY OPTIMIZATION UNDER UNCERTAINTY FOR RENDEZVOUS IN THE CRTBP
    Feldhacker, Juliana D.
    Jones, Brandon A.
    Doostan, Alireza
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 523 - 542
  • [2] Optimization of Well Trajectory Under Uncertainty for Proactive Geosteering
    Chen, Yan
    Lorentzen, Rolf J.
    Vefring, Erlend H.
    SPE JOURNAL, 2015, 20 (02): : 368 - 383
  • [3] TRAJECTORY OPTIMIZATION DESIGN UNDER UNCERTAINTY FOR A GLIDING PROJECTILE
    Chen, Qi
    Wang, Zhongyuan
    Chang, Sijiang
    28TH INTERNATIONAL SYMPOSIUM ON BALLISTICS, VOLS 1 AND 2, 2014, : 589 - 600
  • [4] Guideline Identification for Optimization Under Uncertainty Through the Optimization of a Boomerang Trajectory
    Marchi, Mariapia
    Rigoni, Enrico
    Russo, Rosario
    Clarich, Alberto
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 187 - 201
  • [5] Trajectory tubes in control and estimation problems under uncertainty
    Filippova, T. F.
    IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, 2007, 2 : 55 - 64
  • [6] Hybrid Offline/Online Optimization Under Uncertainty
    De Filippo, Allegra
    Lombardi, Michele
    Milano, Michela
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2899 - 2900
  • [7] Trajectory Option Set Planning Optimization under Uncertainty in CTOP
    Cruciol, Leonardo
    Clarke, John-Paul
    Li Weigang
    2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, : 2084 - 2089
  • [8] Trajectory planning, optimization and control of a hybrid mechanical press
    He, Kai
    Luo, Yuanxin
    Kong, Ching Tom
    Du, R.
    WSEAS Transactions on Systems, 2009, 8 (05): : 614 - 627
  • [9] Trajectory optimization in the presence of uncertainty
    Betts, John T.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2006, 54 (02): : 227 - 243
  • [10] Trajectory optimization in the presence of uncertainty
    John T. Betts
    The Journal of the Astronautical Sciences, 2006, 54 : 227 - 243