Periodic modules over Gorenstein local rings

被引:4
|
作者
Croll, Amanda [1 ]
机构
[1] Concordia Univ, Irvine, CA 92612 USA
基金
美国国家科学基金会;
关键词
Commutative algebra; Gorenstein local ring; Maximal Cohen-Macaulay module; Periodic module; Syzygy; Grothendieck module; ALGEBRA;
D O I
10.1016/j.jalgebra.2013.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t(+/- 1)]-module associated to R. This module, denoted J(R), is the free Z[t(+/- 1)]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 62
页数:16
相关论文
共 50 条