Bayesian hot spot detection in the presence of a spatial trend: application to total nitrogen concentration in Chesapeake Bay

被引:14
|
作者
De Oliveira, V
Ecker, MD [1 ]
机构
[1] Univ No Iowa, Dept Math, Cedar Falls, IA 50614 USA
[2] Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
关键词
Box-Cox family; median function; Monte Carlo; random field; sentivariogram; spatial prediction;
D O I
10.1002/env.508
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Extreme concentrations of water quality variables can cause serious adverse effects in an ecosystem, making their detection an important environmental issue. In Chesapeake Bay, a decreasing gradient of total nitrogen concentration extends from the hi-hest values in the north at the mouth of the Susquehanna river to the lowest values in the south near the Atlantic ocean. We propose a general definition of 'hot spot' that includes previous definitions and is appealing for processes with a spatial trend. We model these data using the Bayesian Transformed Gaussian (BTG) random field model proposed by De Oliveira et al. (1997), which combines the Box-Cox family of power transformations and a spatial trend. The median function is used as the measure of spatial trend, which offers some advantages over the customarily used mean function. The BTG model is fitted by an enhanced Monte Carlo algorithm, and the methodology is applied to the nitrogen concentration data. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:85 / 101
页数:17
相关论文
empty
未找到相关数据