A Two-Level Sparse Grid Collocation Method for Semilinear Stochastic Elliptic Equation

被引:0
|
作者
Chen, Luoping [1 ]
Chen, Yanping [2 ]
Liu, Xiong [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Lingnan Normal Univ, Sch Math & Stat, Zhanjiang 524048, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Collocation Method; Finite Element Method; Semilinear Equation; Convergence Analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; NAVIER-STOKES EQUATIONS; 2-GRID DISCRETIZATION SCHEME; GENERALIZED POLYNOMIAL CHAOS; REACTION-DIFFUSION EQUATIONS; RANDOM INPUT DATA; EIGENVALUE PROBLEMS; PROJECTION METHOD; GALERKIN METHODS; FLUID-FLOW;
D O I
10.1515/cmam-2017-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate a novel two-level discretization method for the elliptic equations with random input data. Motivated by the two-grid method for deterministic nonlinear partial differential equations introduced by Xu [36], our two-level discretization method uses a two-grid finite element method in the physical space and a two-scale stochastic collocation method with sparse grid in the random domain. Specifically, we solve a semilinear equations on a coarse mesh T-H(D) with small scale of sparse collocation points eta(L, N) and solve a linearized equations on a fine mesh T h(D) using large scale of sparse collocation points eta(l, N) (where eta(L, N), eta(l, N) are the numbers of sparse grid with respect to different levels L, l in N dimensions). Moreover, an error correction on the coarse mesh with large scale of collocation points is used in the method. Theoretical results show that when h approximate to H-3, eta(l, N) approximate to (eta(L, N))(3), the novel two-level discretization method achieves the same convergence accuracy in norm parallel to center dot parallel to(L rho 2(Gamma)circle times L2(D)) (L-rho(2)(Gamma) is the weighted L-2 space with rho a probability density function) as that for the original semilinear problem directly by sparse grid stochastic collocation method with T-h(D) and large scale collocation points eta(l, N) in random spaces.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 50 条
  • [1] A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
    Chen, Luoping
    Zheng, Bin
    Lin, Guang
    Voulgarakis, Nikolaos
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 : 195 - 207
  • [2] SPARSE GRID STOCHASTIC COLLOCATION METHOD FOR STOCHASTIC BURGERS EQUATION
    Lee, Hyung-Chun
    Nam, Yun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) : 193 - 213
  • [3] A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
    Qian Zhang
    Zhilin Li
    Zhiyue Zhang
    Journal of Scientific Computing, 2016, 67 : 262 - 280
  • [4] A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
    Zhang, Qian
    Li, Zhilin
    Zhang, Zhiyue
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (01) : 262 - 280
  • [5] On the two-level preconditioning of grid elliptic equations
    Belyavskii, SS
    Mulyarchik, SG
    Popov, AV
    DIFFERENTIAL EQUATIONS, 1998, 34 (07) : 930 - 935
  • [6] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    J. C. Lan
    X. J. Dong
    Z. K. Peng
    W. M. Zhang
    G. Meng
    Acta Mechanica Sinica, 2015, 31 : 545 - 557
  • [7] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    Lan, J. C.
    Dong, X. J.
    Peng, Z. K.
    Zhang, W. M.
    Meng, G.
    ACTA MECHANICA SINICA, 2015, 31 (04) : 545 - 557
  • [8] A sparse grid stochastic collocation method for structural reliability analysis
    He, Jun
    Gao, Shengbin
    Gong, Jinghai
    STRUCTURAL SAFETY, 2014, 51 : 29 - 34
  • [9] SlabLU: a two-level sparse direct solver for elliptic PDEs
    Yesypenko, Anna
    Martinsson, Per-Gunnar
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [10] An adaptive sparse grid method for elliptic PDEs with stochastic coefficients
    Erhel, J.
    Mghazli, Z.
    Oumouni, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 392 - 407