Blow-Up Time for Nonlinear Heat Equations with Transcendental Nonlinearity

被引:2
|
作者
Pak, Hee Chul [1 ]
机构
[1] Dankook Univ, Dept Appl Math, Cheonan 330714, Chungnam, South Korea
关键词
LINEAR PARABOLIC EQUATIONS; A-PRIORI BOUNDS; POSITIVE SOLUTIONS; RATES;
D O I
10.1155/2012/202137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A blow-up time for nonlinear heat equations with transcendental nonlinearity is investigated. An upper bound of the first blow-up time is presented. It is pointed out that the upper bound of the first blow-up time depends on the support of the initial datum.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Blow-up in nonlinear heat equations with supercritical power nonlinearity
    Matano, Hiroshi
    PERSPECTIVES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF HAIM BREZIS, 2007, 446 : 385 - 412
  • [2] Blow-up in nonlinear heat equations
    Dejak, Steven
    Gang, Zhou
    Sigal, Israel Michael
    Wang, Shuangcai
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 433 - 481
  • [3] Blow-up for nonlinear heat equations with absorptions
    Zhang, Hailiang
    Guo, Xiulan
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (03): : 33 - 39
  • [4] BLOW-UP OF SOLUTIONS OF NONLINEAR HEAT-EQUATIONS
    CAFFARRELLI, LA
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 129 (02) : 409 - 419
  • [5] UNIVERSALITY IN BLOW-UP FOR NONLINEAR HEAT-EQUATIONS
    BRICMONT, J
    KUPIAINEN, A
    NONLINEARITY, 1994, 7 (02) : 539 - 575
  • [6] THE BLOW-UP TIME FOR SOLUTIONS OF NONLINEAR HEAT-EQUATIONS WITH SMALL DIFFUSION
    FRIEDMAN, A
    LACEY, AA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) : 711 - 721
  • [7] Blow-up conditions for nonlinear Volterra integral equations with power nonlinearity
    Malolepszy, Tomasz
    Okrasinski, Wojciech
    APPLIED MATHEMATICS LETTERS, 2008, 21 (03) : 307 - 312
  • [8] Non-blow-up and blow-up results to heat equations with logarithmic nonlinearity on stratified groups
    Kashkynbayev, Ardak
    Kassymov, Aidyn
    Suragan, Durvudkhan
    QUAESTIONES MATHEMATICAE, 2023, 46 (06) : 1105 - 1117
  • [9] A remark on the energy blow-up behavior for nonlinear heat equations
    Zaag, H
    DUKE MATHEMATICAL JOURNAL, 2000, 103 (03) : 545 - 556
  • [10] BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
    D'Ancona, Piero
    Nicaise, Serge
    Schnaubelt, Roland
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,