Limit cycles of discontinuous piecewise polynomial vector fields

被引:7
|
作者
de Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
Tonon, Durval Jose [3 ]
机构
[1] UNESP, Fac Ciencias, Dept Matemat, Av Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Fed Goias, Inst Math & Stat, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Limit cycle; Averaging theory; Cyclicity; LINEAR SYSTEMS; BIFURCATION; EXISTENCE; NUMBER;
D O I
10.1016/j.jmaa.2016.11.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the first average function is non-zero we provide an upper bound for the maximum number of limit cycles bifurcating from the periodic solutions of the center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside a class of discontinuous piecewise polynomial vector fields of degree n with k pieces. The positive integers m, n and k are arbitrary. The main tool used for proving our results is the averaging theory for discontinuous piecewise vector fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 50 条