DFIB-SPH study of submerged horizontal cylinder oscillated close to the free surface of a viscous liquid

被引:2
|
作者
Bohaila, Burniadi [1 ]
Chern, Ming-Jyh [1 ]
An-Nizhami, Avicenna [1 ]
Borthwick, A. G. L. [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10607, Taiwan
[2] Univ Edinburgh, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland
关键词
smoothed particle hydrodynamics; direct forcing immersed boundary method; solid-fluid interaction; weakly compressible; free surface; oscillating cylinder; KEULEGAN-CARPENTER NUMBERS; CIRCULAR-CYLINDER; FLOW; BOUNDARY; FORCES;
D O I
10.1088/1873-7005/ab1893
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The hydrodynamics is studied numerically of a horizontal cylinder undergoing forced in-line oscillation beneath the free surface of otherwise quiescent liquid at low Keulegan-Carpenter and Froude numbers. The direct forcing immersed boundary-smoothed particle hydrodynamics (DFIB-SPH) numerical model uniquely combines two well-established techniques: the direct forcing immersed boundary method and SPH. This facilitates accurate evaluation of the potentially violent free surface motions through SPH and the hydrodynamic force on the solid body using a volume integral. A parameter study is conducted covering a range of Keulegan-Carpenter numbers (KC = 3, 7, and 10) and submergence ratios (H/D = 0.5 - 2.0) at fixed Reynolds number (Re = 100) and Froude number (Fr = 0.35). The flow pattern and transverse force coefficient are found to be affected by the proximity of the cylinder to the free surface. Spectral analysis suggests that free surface wave motions are linked to the transverse force acting on the submerged, oscillating cylinder.
引用
收藏
页数:19
相关论文
共 22 条
  • [1] Wave-induced vibration of a fully submerged horizontal cylinder close to a free surface: a theory and experiment
    Shin, Dong Min
    Chung, Jaeho
    SHIPS AND OFFSHORE STRUCTURES, 2022, 17 (08) : 1843 - 1851
  • [2] SPH modelling of viscous flow past a circular cylinder interacting with a free surface
    Bouscasse, Benjamin
    Colagrossi, Andrea
    Marrone, Salvatore
    Souto-Iglesias, Antonio
    COMPUTERS & FLUIDS, 2017, 146 : 190 - 212
  • [3] Modeling of the Viscous Flow with a Free Surface inside a Rotating Horizontal Cylinder
    G. R. Shrager
    M. N. Shtokolova
    V. A. Yakutenok
    Yu. M. Milekhin
    V. M. Merkulov
    Yu. B. Banzula
    S. V. Karyazov
    I. A. Glushkov
    Theoretical Foundations of Chemical Engineering, 2005, 39 : 283 - 289
  • [4] Modeling of the viscous flow with a free surface inside a rotating horizontal cylinder
    Shrager, GR
    Shtokolova, MN
    Yakutenok, VA
    Milekhin, YM
    Merkulov, VM
    Banzula, YB
    Karyazov, SV
    Glushkov, IA
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2005, 39 (03) : 283 - 289
  • [5] CFD ANALYSIS OF WAVES OVER A SUBMERGED CYLINDER IN CLOSE PROXIMITY OF THE FREE SURFACE
    Ottens, Harald
    Pistidda, Alessio
    van Dijk, Radboud
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 2, 2014,
  • [6] Formation of the free surface of a viscous fluid volume inside a rotating horizontal cylinder
    G. R. Shrager
    M. N. Shtokolova
    V. A. Yakutenok
    Fluid Dynamics, 2009, 44 : 322 - 327
  • [7] Formation of the free surface of a viscous fluid volume inside a rotating horizontal cylinder
    Shrager, G. R.
    Shtokolova, M. N.
    Yakutenok, V. A.
    FLUID DYNAMICS, 2009, 44 (02) : 322 - 327
  • [8] Incompressible SPH simulation of flow past horizontal cylinder between plane wall and free surface
    Moballa, Burniadi
    Chern, Ming-Jyh
    Borthwick, A. G. L.
    JOURNAL OF FLUIDS AND STRUCTURES, 2020, 97
  • [9] CALCULATING FLOW RATE OF A LIQUID RECOVERED ON SURFACE OF A REVOLVING HORIZONTAL CYLINDER PARTIALLY SUBMERGED IN A LIQUID LAYER
    KUZNETSOV, VL
    LEBEDEV, AV
    TIKHOMIR.SS
    CHECHIK, OS
    ZHURNAL PRIKLADNOI KHIMII, 1971, 44 (10) : 2314 - +
  • [10] Numerical solution of the free-surface viscous flow on a horizontal rotating elliptical cylinder
    Hunt, Roland
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (04) : 1094 - 1114