Analysis of multilocus fingerprinting data sets containing missing data

被引:357
|
作者
Schlueter, Philipp M.
Harris, Stephen A.
机构
[1] Univ Vienna, Inst Bot, Dept Systemat & Evolutionary Bot, A-1030 Vienna, Austria
[2] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
来源
MOLECULAR ECOLOGY NOTES | 2006年 / 6卷 / 02期
关键词
DNA fingerprinting; dominant markers; Jaccard's similarity coefficient; missing data; Shannon's diversity index;
D O I
10.1111/j.1471-8286.2006.01225.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Missing data are commonly encountered using multilocus, fragment-based (dominant) fingerprinting methods, such as random amplified polymorphic DNA (RAPD) or amplified fragment length polymorphism (AFLP). Data sets containing missing data have been analysed by eliminating those bands or samples with missing data, assigning values to missing data or ignoring the problem. Here, we present a method that uses random assignments of band presence-absence to the missing data, implemented by the computer program FAMD (available from http://homepage.univie.ac.at/philipp.maria.schlueter/famd.html), for analyses based on pairwise similarity and Shannon's index. When missing values group in a data set, sample or band elimination is likely to be the most appropriate action. However, when missing values are scattered across the data set, minimum, maximum and average similarity coefficients are a simple means of visualizing the effects of missing data on tree structure. Our approach indicates the range of values that a data set containing missing data points might generate, and forces the investigator to consider the effects of missing values on data interpretation.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 50 条
  • [1] Rough Sets Approximations in Data Tables Containing Missing Values
    Nakata, Michinori
    Sakai, Hiroshi
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 673 - +
  • [2] Applying rough sets to data tables containing missing values
    Nakata, Michinori
    Sakai, Hiroshi
    ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, PROCEEDINGS, 2007, 4585 : 181 - +
  • [3] Exploratory analysis of data sets with missing elements and outliers
    Smolinski, A
    Walczak, B
    Einax, JW
    CHEMOSPHERE, 2002, 49 (03) : 233 - 245
  • [4] Missing entry replacement data analysis: A replacement approach to dealing with missing data in paleontological and total evidence data sets
    Norell, MA
    Wheeler, W
    JOURNAL OF VERTEBRATE PALEONTOLOGY, 2003, 23 (02) : 275 - 283
  • [5] On Testability of Missing Data Mechanisms in Incomplete Data Sets
    Raykov, Tenko
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2011, 18 (03) : 419 - 429
  • [6] Missing values in monotone data sets
    Popova, Viara
    ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, Vol 1, 2006, : 627 - 632
  • [7] Species tree inference from multilocus data sets
    Posada, David
    GENOME, 2015, 58 (05) : 267 - 267
  • [8] Data envelopment analysis with missing data
    Kuosmanen, T.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (12) : 1767 - 1774
  • [9] Principal component analysis for data containing outliers and missing elements
    Serneels, Sven
    Verdonck, Tim
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1712 - 1727
  • [10] Missing Data in Surgical Data Sets: A Review of Pertinent Issues and Solutions
    Sharath, Sherene E.
    Zamani, Nader
    Kougias, Panos
    Kim, Soeun
    JOURNAL OF SURGICAL RESEARCH, 2018, 232 : 240 - 246